Cho tam giác nhọn ABC, vẽ các đường cao BD (De AC) và CE (E= AB). Biết AB = 10cm; AC = 12cm, BD = 8cm a/ Chứng minh: ABD AACE. b/ Tính độ dài đoạn thăng CE. c/ Tính diện tích AADE.
Cho tam giác ABC nhọn ( AB < AC) nội tiếp đường tròn (O;R). Vẽ đường cao BD và CE cắt tại H{ với De AC; E = AB). BD và CE lần
lượt cắt đường tròn tại M và N.
a) Chứng minh tứ giác BCDE nội tiếp đường tròn. b) Biết overline ACN = 30 deg . Tính số đo các cung nhỏ AN, MN
c) Chứng minh :OA 1 MN.
d) Gọi giao điểm của AH và BC là K. Chứng minh 2R.AK = AB.AC
a: Xét tứ giác BEDC có
góc BEC=góc BDC=90 độ
=>BEDC là tứ giác nội tiêp
b: góc ABM=góc ACN
=>sđ cung AM=sđ cung AN=2*30=60 độ
=>AM=AN
c: OM=ON
AM=AN
=>OA là trung trực của MN
=>OA vuông góc MN
d: Kẻ đường kính AD
Xét ΔACD vuông tại C và ΔAKB vuông tại K có
góc ADC=góc ABK
=>ΔACD đồng dạng với ΔAKB
=>AC/AK=AD/AB
=>AK*2*R=AB*AC
Hình học lớp 8 Cho tam giác ABC có 3 góc nhọn. Vẽ hai đường cao BD và CE (D thuộc AC, E thuộc AB) a) Chứng minh: Tam giác ADB đồng dạng tam giác AEC b) Chứng minh: AD. AC = AB.AE c) Biết DE= 2cm, BC = 4cm. Tính diện tích ADE/ diện tích ABC (Mai thi rồi cíu tôi đi 💦)
a, Xét tam giác ADB và tam giác AEC có
^ADB = ^AEC = 900
^DAB _ chung
Vậy tam giác ADB ~ tam giác AEC (g.g)
b, \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\Rightarrow AD.AC=AB.AE\)
c, \(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{DE}{BC}\right)^2=\dfrac{1}{4}\)
Cho tam giác nhọn ABC có BC = a; AB = AC = b; các đường cao BD, CE cắt nhau tại H. Nối D với E. Tính DE theo a, b.
Cho tam giác ABC nhọn. Vẽ đường cao BD và CE của tam giác, biết D thuộc cạnh AC, E thuộc cạnh AB. CE và BD cắt nhau tại H. Gọi I, K lần lượt là trung điểm của BC và AH. Chứng minh rằng: a) Bốn điểm B, C, E, D cùng thuộc đường tròn tâm I. I. b) Tứ giác IEKD nội tiếp được trong một đường tròn.
a: Xét tứ giác BCDE có
\(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BCDE là tứ giác nội tiếp
hay B,C,D,E cùng thuộc một đường tròn
cho tam giác abc có ba góc nhọn , các đường cao BD và CE ( D thuộc AC,E thuộc AB) . CMR gócADE=gócABC
cho tam giác ABC có góc nhọn .vẽ đường cao BD và CE (d thuộc AC;E thuộc AB) trên tia đối của tia BD lấy điểm I,trên tia đối của tia CE lấy điểm K sao cho BI=AC và CK=AB.tam giác AIK là tam giác gì?
Trong tam giác nhọn ABC, cho H là giao điểm của hai đường cao CE và BD (E thuộc AB,D thuộc AC). Một đường tròn đường kính DE cắt AB tại F và AC tại G. Gọi K là giao điểm của FG và AH. Cho BC = 25, BD=20, BE =7. Tính chiều dài đoạn AK.
Trong tam giác nhọn ABC, cho H là giao điểm của hai đường cao CE và BD (E thuộc AB,D thuộc AC). Một đường tròn đường kính DE cắt AB tại F và AC tại G. Gọi K là giao điểm của FG và AH. Cho BC = 25, BD=20, BE =7. Tính chiều dài đoạn AK.
Bài 1 : Cho đường thẳng a và điểm A nằm ngoài đường thẳng a . Trên đường thẳng a lấy hai điểm B và C . Tính độ dài các đường xiên AB , AC biết AH=6cm ; HB=8cm ; HC=10cm
Bài 2 :Cho tam giác ABC ( AB khác AC) Gọi M là một điểm nằm giữa B và C. Gọi E lần lượt là hình chiếu của B và C xuống đường thẳng AM. So sánh BE+CF với BC
Bài 3 : Cho tam giác ABC có 3 góc nhọn . Kẻ BD vuông góc với AC ( D thuộc AC ), CE vuông góc với AB ( E thuộc AB ). Chứng minh BD+CE<AB+AC
GIÚP MÌNH VỚI !!! TỐI THỨ BẢY NHÉ MỌI NGƯỜI NHỚ VẼ HÌNH NHÉ CÁC BẠN