Cho tam giác ABC. Góc A = 90; AB = 8cm; AC = 15cm
a. Tính BC
b. Gọi I là giao điểm các tia phân giác của tam giác ABC. Tính khoảng cách từ điểm I đến các cạnh của tam giác
Cho tam giác ABC và tam giác A’B’C’ có góc A= góc A’=90 độ và BC/B’C’=AC/A’C’.C/m tam giác ABC~tam giác A’B’C’
1, Cho tam giác ABC ( góc A=90 độ). Từ trung điểm I của cạnh AC kẻ đường thẳng vuông góc với cạnh huyền BC tại D. C/m: BD^2-CD^2=AB^2
2, Cho tam giác ABC( góc A=90 độ). phân giác AD, đường cao AH. biết BD=15cm, CD=20cm, tính BH, CH
3, Cho tam giác ABC( góc A=90 độ). AB=12cm, AC=16cm, phân giác AD, đường cao AH. tính HB,HC,HD
4, Cho tam giác ABC( góc A=90 độ) đường cao AH. Tính chu vi tam giác ABC biết AH= 14 cm, HB/HC=1/4
giúp đỡ mình nhé, mình đang cần gấp
3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)
Cho tam giác ABC có góc A - góc B = 90 độ, vẽ CH vuông góc AB. Chứng minh : tam giác HCA = tam giác ABC
cho tam giác ABC,góc A=90 độ
tính góc B+C=?
có nhận xét gì về tam giác ABC và góc B,góc C
Vẽ hình
cho tam giác abc, góc A=90°, góc B =60°, AB=8cm a) tính góc C, cạnh Ac và BC b) tính diện tích tam giác ABC
Ta có \(\widehat{A}=90^0\Rightarrow\Delta ABC\) vuông tại \(A\)
\(a,\widehat{C}=90^0-\widehat{B}=30^0\\ AC=\tan B\cdot AB=\tan60^0\cdot8=8\sqrt{3}\left(cm\right)\\ BC=\dfrac{AB}{\sin C}=\dfrac{8}{\sin30^0}=16\left(cm\right)\\ b,S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot8\cdot8\sqrt{3}=32\sqrt{3}\left(cm^2\right)\)
1)Cho tam giác ABC có góc C kém góc B 90 độ.Kẻ tia phân giác AD.Tính ADB
2)Cho tam giác ABC có góc B > góc C là 90 dộ.Kẻ đường cao AH.CM: góc BAH = góc ACH
3)Cho tam giác ABC có các phân giác AD và BE.CM:
a)Nếu góc ADC = góc BEC thì góc A = góc B
b)Nếu góc ADB = góc BEC thì góc A + góc B=120 độ
Cho tam giác ABC góc A=90°;BC=15cm; AB=9cm.So sánh ba góc của tam giác
AC=căn 15^2-9^2=12cm
Xét ΔABC có AB<AC<BC
=>góc C<góc B<góc A
Cho tam giác ABC,góc A=90*,AH vuông góc với BC biết HC=18cm,HB=32cm.Tính AH và các cạnh tam giác ABC
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow AH^2=18\cdot32=576\)
hay AH=24cm
Ta có: BH+CH=BC
nên BC=18+32=50cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=32\cdot50=1600\\AC^2=18\cdot50=900\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=40cm\\AC=30cm\end{matrix}\right.\)
cho tam giác ABC có góc A-góc B+góc C=90 độ và góc A-góc C=-5 độ.So sánh các cạnh trong tam giác
Đặt \(\widehat{A}=a;\widehat{B}=b;\widehat{C}=c\)
Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=>a+b+c=180(1)
\(\widehat{A}-\widehat{B}+\widehat{C}=90^0\)
=>a-b+c=90(2)
\(\widehat{A}-\widehat{C}=-5^0\)
=>\(\widehat{C}-\widehat{A}=5^0\)
=>c-a=5(3)
Từ (1),(2),(3) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b+c=180\\a-b+c=90\\c-a=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a+c+b=180\\a+c-b=90\\c-a=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+c=\dfrac{180+90}{2}=\dfrac{270}{2}=135\\b=\dfrac{180-90}{2}=\dfrac{90}{2}=45\\c-a=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=45\\c+a=135\\c-a=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=45\\c=\dfrac{135+5}{2}=\dfrac{140}{2}=70\\a=c-5=70-5=65\end{matrix}\right.\)
Vậy: \(\widehat{A}=65^0;\widehat{B}=45^0;\widehat{B}=70^0\)
Xét ΔABC có \(\widehat{B}< \widehat{A}< \widehat{C}\)
mà AC,BC,AB lần lượt là cạnh đối diện của các góc ABC;BAC;ACB
nên AC<BC<AB
cho tam giác góc vuông ABC(A=90)có đường cao ah . biết Ab=3cm và AC=4cm.a chứng minh tam giác HBAcho tam giác góc vuông ABC(A=90)có đường cao ah . biết Ab=3cm và AC=4cm.a chứng minh tam giác HBA~ AbC, B tính độ dài BC và AH AbC, B tính độ dài BC và AH
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
a. Xét ΔHBA và ΔABC có:
\(\widehat{H}=\widehat{A}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔHBA \(\sim\) ΔABC (g.g)
b. Vì ΔABC vuông tại A
Theo đ/lí Py - ta - go ta có:
BC2 = AB2 + AC2
BC2 = 32 + 42
\(\Rightarrow\) BC2 = 25 cm
\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm
Ta lại có: ΔHBA \(\sim\) ΔABC
\(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)
\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\)
\(\Rightarrow\) AH = 2,4 cm