Ta có: B = \(\sqrt{x}+1\); A = \(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\)
Tìm x nguyên để C = \(A\left(B-2\right)\)
Cho B=\(\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}-\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
a)Rút gọn B
b)Tìm m để với mọi giá trị x>9 ta có \(m\left(\sqrt{x}-3\right)B>x+1\)
a: \(=\dfrac{4x-8\sqrt{x}+8x}{x-4}:\dfrac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{4\sqrt{x}\left(3\sqrt{x}-2\right)}{x-4}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{-\sqrt{x}+3}=\dfrac{-4x\left(3\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
b: \(m\left(\sqrt{x}-3\right)\cdot B>x+1\)
=>\(-4xm\left(3\sqrt{x}-2\right)>\left(\sqrt{x}+2\right)\cdot\left(x+1\right)\)
=>\(-12m\cdot x\sqrt{x}+8xm>x\sqrt{x}+2x+\sqrt{x}+2\)
=>\(x\sqrt{x}\left(-12m-1\right)+x\left(8m-2\right)-\sqrt{x}-2>0\)
Để BPT luôn đúng thì m<-0,3
1) Với giá trị nào của x ta có \(x\sqrt{3}=-\sqrt{3x^2}\)
2) Đưa thừa số vào trong dấu căn của biểu thức \(ab^2\sqrt{a}\) với a > 0 ta được :
3) Khử mẫu của biểu thức \(a\sqrt{\dfrac{b}{a}}\) (với a>0) ta được :
\(1,ĐKXĐ:x\ge0\\ x\sqrt{3}=-\sqrt{3x^2}\\ \Leftrightarrow3x^2=9x^2\\ \Leftrightarrow6x^2=0\\ \Leftrightarrow x=0\left(tm\right)\)
\(2,ab^2\sqrt{a}=ab^2\sqrt{a}\)
\(3,a\sqrt{\dfrac{b}{a}}=\sqrt{ab}\)
Đk: \(x\ge\frac{2}{3}\)
Ta có: \(x^2+1^2\ge2x=\left(2x-1\right)+1=\left(\sqrt{2x-1}\right)^2+1^2\ge2\sqrt{2x-1}\left(1\right)\)
Lại có: \(\left(\sqrt{x}+\sqrt{3x-2}\right)^2\le2\left(x+3x-2\right)=2\left(4x-2\right)=4\left(2x-1\right)\)
suy ra: \(\sqrt{x}+\sqrt{3x-2}\le2\sqrt{2x-1}\left(2\right)\)
Từ (1);(2) suy ra \(x^2+1\ge\sqrt{x}+\sqrt{3x-2}\)
Để dấu"=" xảy ra theo đề bài thì x=1
Ta có: A = \(\dfrac{4\sqrt{x}}{\sqrt{x}-2}\) và B = \(\dfrac{4\left(\sqrt{x}+2\right)}{\sqrt{x}-2}\) với \(x\ge0;x\ne4\)
Cho \(M=\dfrac{A}{B}\). So sánh \(M\) và \(\sqrt{M}\)
\(P=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a, Rút gọn
b, Tìm x để P=-1
c, tìm m để với mọi giá trị x>9 Ta có \(m\left(\sqrt{x}-3\right)P>x+1\)
P=\(\left(\frac{4\sqrt{x}}{2+\sqrt{x}}-\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a) Rút gọn P
b) Tính x để P=-1
c) Tìm m để với mọi giá trị x>9 ta có m(\(\sqrt{x}\)- 3)P > x+1
CMR: với mọi x>=1 ta luôn có: \(\sqrt{x+1}-\left(\frac{1}{\sqrt{x}}+\sqrt{x-1}\right)>0\)
Xét vế trái :
Do a,b,c >0
Áp dụng tính chất dãy tỉ số:
\(\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)
Tương tự ta cũng có:
\(\frac{b}{b+c}< \frac{b+a}{a+b+c}\)
\(\frac{c}{a+c}< \frac{c+b}{a+b+c}\)
Cộng vế với vế của các bđt ta đc:
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}< \frac{a+c+b+a+c+b}{a+b+c}=2\left(1\right)\)
Xét vế phải ta có: a,b,c>0
Áp dụng bđt Cô-si:
\(a+b+c\ge2\sqrt{\left(a+b\right)c}\Rightarrow\frac{1}{\sqrt{\left(a+b\right)c}}\ge\frac{2}{x+y+z}\Rightarrow\sqrt{\frac{x}{y+z}}\ge\frac{2x}{x+y+z}\)
Tương tự ta có:
\(\sqrt{\frac{y}{x+z}}\ge\frac{2y}{x+y+z}\)
\(\sqrt{\frac{z}{x+y}}\ge\frac{2z}{x+y+z}\)
Cộng vế với vế của các bđt ta đc:
\(\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{z+x}}+\sqrt{\frac{z}{x+y}}\ge2\left(2\right)\)
Từ (1) (2) suy ra đpcm
đặt \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+3zx+6}}\)
ta có:\(\left(x^3+2x^2+3x+3\right)\left(x-1\right)^2\ge0\)
\(\Leftrightarrow x^5-x^2\ge3x-3\)
cmtt=>\(y^5-y^2\ge3y-3;z^5-z^2\ge3z-3\)
\(\Rightarrow P\le\frac{1}{\sqrt{3x-3+3xy+6}}+\frac{1}{\sqrt{3y-3+3yz+6}}+\frac{1}{\sqrt{3z-3+3zx+6}}\)
\(=\frac{1}{\sqrt{3\left(x+xy+1\right)}}+\frac{1}{\sqrt{3\left(y+yz+1\right)}}+\frac{1}{\sqrt{3\left(z+zx+1\right)}}\)
áp dụng bunhia ta có:
\(3\left(x+xy+1\right)\ge\left(\sqrt{x}+\sqrt{xy}+1\right)^2\)
cmtt\(\Rightarrow P\le\frac{1}{\sqrt{x}+\sqrt{xy}+1}+\frac{1}{\sqrt{y}+\sqrt{yz}+1}+\frac{1}{\sqrt{z}+\sqrt{zx}+1}\)
đặt \(\sqrt{x}=a;\sqrt{y}=b;\sqrt{z}=c\)
\(\Rightarrow\frac{1}{\sqrt{x}+\sqrt{xy}+1}+\frac{1}{\sqrt{y}+\sqrt{yz}+1}+\frac{1}{\sqrt{z}+\sqrt{zx}+1}=\frac{1}{a+ab+1}+\frac{1}{b+bc+1}+\frac{1}{c+ca+1}\)
\(=\frac{abc}{a+ab+abc}+\frac{1}{b+bc+1}+\frac{b}{bc+abc+b}=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}=1\)
\(\Rightarrow P\le1\)