a/ Xác định phương trình đường thẳng (d) đi qua hai điểm A(2; 2) và B(1; 5)
b/ Cho phương trình: x2 – (4m – 1)x + 3m2 – 2m = 0 (ẩn x). Tìm m để phương trình có
hai nghiệm phân biệt x1, x2 thỏa mãn điều kiện:
2 2
1 2 x x 7
Xác định phương trình của đường thẳng (d):y=ax+b biết đường thẳng (d) đi qua điểm A(-1;2) và điểm B(3; -2).
Giúp với, mình cần gấp
Gọi d là đường thẳng đi qua I (2,-1)cắt hai trục tọa độ tại A, B sao cho I là trung điểm của AB.
1) Xác định tọa độ hai điểm A,B.
2) Viết phương trình đường thẳng d.
Giả sử A là giao của d với Ox và B là giao của d với Oy
\(\Rightarrow A\left(a;0\right)\) và \(B\left(0;b\right)\)
Do I là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}x_I=\dfrac{a+0}{2}\\y_I=\dfrac{b+0}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}A\left(4;0\right)\\B\left(0;-2\right)\end{matrix}\right.\)
Phương trình d theo đoạn chắn:
\(\dfrac{x}{4}+\dfrac{y}{-2}=1\Leftrightarrow x-2y-4=0\)
Trên mặt phẳng tọa độ cho hai điểm B(4; 0) và C(-1; 4).
a) Viết phương trình đường thẳng (d) đi qua điểm C và song song với đường thẳng y = 2x-3. Xác định tọa độ giao điểm A của đường thẳng (d) với trục hoành Ox.
b) Xác định các hệ số a và b biết đồ thị hàm số y= ax +b đi qua 2 điểm B và C. Tính góc tạo bởi đường thẳng BC và trục hoành Ox (làm tròn đến phút).
c) Tính chu vi của tam giác ABC (đơn vị đo trên các trục tọa độ là xentimét) (kết quả làm tròn đến chữ số thập phân thứ nhất).
a) Gọi (d): y=ax+b
Vì (d)//y=2x-3 nên \(\left\{{}\begin{matrix}a=2\\b\ne-3\end{matrix}\right.\)
Vậy: (d): y=2x+b
Vì (d) đi qua điểm C(-1;4) nên
Thay x=-1 và y=4 vào (d), ta được:
\(2\cdot\left(-1\right)+b=4\)
hay b=6
Vậy: (d): y=2x+6
Thay y=0 vào (d), ta được:
2x+6=0
hay x=-3
Vậy: A(-3;0)
b) Vì y=ax+b đi qua hai điểm B(4;0) và C(-1;4) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}4a+b=0\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=-4\\b=a+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{5}\\b=\dfrac{-4}{5}+4=\dfrac{-4}{5}+\dfrac{20}{5}=\dfrac{16}{5}\end{matrix}\right.\)
Trên mặt phẳng tọa độ cho hai điểm B(4; 0) và C(-1; 4).
a) Viết phương trình đường thẳng (d) đi qua điểm C và song song với đường thẳng y = 2x-3. Xác định tọa độ giao điểm A của đường thẳng (d) với trục hoành Ox.
b) Xác định các hệ số a và b biết đồ thị hàm số y= ax +b đi qua 2 điểm B và C. Tính góc tạo bởi đường thẳng BC và trục hoành Ox (làm tròn đến phút).
c) Tính chu vi của tam giác ABC (đơn vị đo trên các trục tọa độ là xentimét) (kết quả làm tròn đến chữ số thập phân thứ nhất).
a) Gọi (d): y=ax+b
Vì (d)//y=2x-3 nên ta có: \(\left\{{}\begin{matrix}a=2\\b\ne-3\end{matrix}\right.\)
=> (d): y=2x+b
Thay x=-1 và y=4 vào (d), ta được:
\(2\cdot\left(-1\right)+b=4\)
\(\Leftrightarrow b=6\)
Vậy: (D): y=2x+6
Thay y=0 vào (d),ta được:
\(2x+6=0\)
\(\Leftrightarrow x=-3\)
Vậy: A(-3;0)
b) Vì đồ thị hàm số y=ax+b đi qua hai điểm B(4;0) và C(-1;4) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}4a+b=0\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=-4\\-a+b=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{5}\\b=4+a=4+\dfrac{-4}{5}=4-\dfrac{4}{5}=\dfrac{16}{5}\end{matrix}\right.\)
Vậy: \(a=-\dfrac{4}{5}\); \(b=\dfrac{16}{5}\)
c) Độ dài đoạn thẳng AB là:
\(AB=\sqrt{\left(-3-4\right)^2+\left(0-0\right)^2}=7\)(cm)
Độ dài đoạn thẳng AC là:
\(AC=\sqrt{\left(-3+1\right)^2+\left(0-4\right)^2}=2\sqrt{5}\left(cm\right)\)
Độ dài đoạn thẳng BC là:
\(BC=\sqrt{\left(4+1\right)^2+\left(0-4\right)^2}=\sqrt{41}\left(cm\right)\)
Chu vi tam giác ABC là:
\(C_{ABC}=AB+AC+BC\)
\(=7+2\sqrt{5}+\sqrt{41}\)
\(\simeq17,9\left(cm\right)\)
Bài 2: Cho (d): y = 2x + 3; (d’): y = - 3x - 2
a/ Xác định tọa độ giao điểm A của (d) và (d’)
b/ Viết phương trình đường thẳng đi qua A và có hoành độ luôn bằng tung độ
c/ Viết phương trình đường thẳng đi qua A và vuông với trục hoành
a: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x+3=-3x-2\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Cho: (d): y = 2x + 3; (d’): y = - 3x - 2
a/ Xác định tọa độ giao điểm A của (d) và (d’)
b/ Viết phương trình đường thẳng đi qua A và song song với đường thẳng y = - x + 5
c/ Viết phương trình đường thẳng đi qua A và có hoành độ luôn bằng tung độ
d/ Viết phương trình đường thẳng đi qua A và cắt trục tung tại điểm có tung độ bằng -1
e/ Viết phương trình đường thẳng đi qua A và vuông với trục hoành
f/ Vẽ (d) và (d’) trên cùng một hệ trục tọa độ. Giao điểm của (d) và (d’) với trục hoành lần lượt là B; C. Tính diện tích tam giác ABC?
cho hàm số y= (m -2)x +3(d)
a) Xác định m biết (d) đi qua A(1;-1)
b) Viết phương trình đường thẳng đi qua điểm B(-2;2) và song song với đường thẳng vừa tìm được ở câu a
a: Thay x=1 và y=-1 vào (d), ta được:
m+1=-1
hay m=-2
Cho: (d): y = 2x + 3; (d’): y = - 3x - 2
a/ Xác định tọa độ giao điểm A của (d) và (d’)
b/ Viết phương trình đường thẳng đi qua A và song song với đường thẳng y = - x + 5
c/ Viết phương trình đường thẳng đi qua A và có hoành độ luôn bằng tung độ
d/ Viết phương trình đường thẳng đi qua A và cắt trục tung tại điểm có tung độ bằng -1
e/ Viết phương trình đường thẳng đi qua A và vuông với trục hoành
f/ Vẽ (d) và (d’) trên cùng một hệ trục tọa độ. Giao điểm của (d) và (d’) với trục hoành lần lượt là B; C. Tính diện tích tam giác ABC?
a: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x+3=-3x-2\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)
Cho: (d): y = 2x + 3; (d’): y = - 3x - 2
a/ Xác định tọa độ giao điểm A của (d) và (d’)
b/ Viết phương trình đường thẳng đi qua A và song song với đường thẳng y = - x + 5
c/ Viết phương trình đường thẳng đi qua A và có hoành độ luôn bằng tung độ
d/ Viết phương trình đường thẳng đi qua A và cắt trục tung tại điểm có tung độ bằng -1
e/ Viết phương trình đường thẳng đi qua A và vuông với trục hoành
f/ Vẽ (d) và (d’) trên cùng một hệ trục tọa độ. Giao điểm của (d) và (d’) với trục hoành lần lượt là B; C. Tính diện tích tam giác ABC?
\(a,\text{PT hoành độ giao điểm: }2x+3=-3x-2\Leftrightarrow x=-1\Leftrightarrow y=1\Leftrightarrow A\left(-1;1\right)\\ b,\text{Gọi đt đó là }y=ax+b\\ \Leftrightarrow\left\{{}\begin{matrix}-a+b=1\\a=-1;b\ne5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=0\end{matrix}\right.\Leftrightarrow y=-x\\ d,\text{Gọi đt cần tìm là }y=ax+b\\ \Leftrightarrow\left\{{}\begin{matrix}-a+b=1\\b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=-1\end{matrix}\right.\Leftrightarrow y=-2x-1\)
Cho: (d): y = 2x + 3; (d’): y = - 3x - 2
a/ Xác định tọa độ giao điểm A của (d) và (d’)
b/ Viết phương trình đường thẳng đi qua A và song song với đường thẳng y = - x + 5
c/ Viết phương trình đường thẳng đi qua A và có hoành độ luôn bằng tung độ
d/ Viết phương trình đường thẳng đi qua A và cắt trục tung tại điểm có tung độ bằng -1
e/ Viết phương trình đường thẳng đi qua A và vuông với trục hoành
f/ Vẽ (d) và (d’) trên cùng một hệ trục tọa độ. Giao điểm của (d) và (d’) với trục hoành lần lượt là B; C. Tính diện tích tam giác ABC?
a: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x+3=-3x-2\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)