Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
30 tháng 9 2023 lúc 23:04

a) Phương trình tổng quát của đường thẳng d đi qua điểm \(A\left( { - 3;2} \right)\) và có một vectơ pháp tuyến là \(\overrightarrow n  = \left( {2; - 3} \right)\) là: \(2\left( {x + 3} \right) - 3\left( {y - 2} \right) = 0 \Leftrightarrow 2x - 3y+12 = 0\)

Do vecto pháp tuyến là \(\overrightarrow n  = (2; - \;3) \Rightarrow \overrightarrow u  = (3;2)\)

Từ đó ta có phương trình tham số của đường thẳng d là:

 \(\left\{ \begin{array}{l}x =  - \;3 + 3t\\y = 2 + 2t\end{array} \right.\)\((t \in \mathbb{R})\)

b) Phương trình tham số của  đường thẳng d đi qua điểm \(B\left( { - 2; - 5} \right)\) và có một vectơ chỉ phương là \(\overrightarrow u  = \left( { - 7;6} \right)\) là: \(\left\{ \begin{array}{l}x =  - 2 - 7t\\y =  - 5 + 6t\end{array} \right.\left( {t \in \mathbb{R}} \right)\).

Từ đó ta có phương trình tổng quát của đường thẳng d là: \(\frac{{x + 2}}{{ - 7}} = \frac{{y + 5}}{6} \Leftrightarrow 6x + 7y + 47 = 0\).

c) Phương trình tổng quát của đường thẳng đi qua hai điểm \(C\left( {4;3} \right),D\left( {5;2} \right)\) là: \(\frac{{x - 4}}{{5 - 4}} = \frac{{y - 3}}{{2 - 3}} \Leftrightarrow x + y - 7 = 0\)

Từ đó ta có phương trình tham số của đường thẳng d là: \(\left\{ \begin{array}{l}x = 7 - t\\y = t\end{array} \right.{\rm{ }}\left( {t \in \mathbb{R}} \right)\) .

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
27 tháng 9 2023 lúc 0:01

a) Đường thẳng \(d\) đi qua điểm \(A( - 1;5)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( {2;1} \right)\), nên có phương trình tham số là:

 \(\left\{ \begin{array}{l}x =  - 1 + 2t\\y = 5 + t\end{array} \right.\)

Đường thẳng \(d\) có vectơ chỉ phương \(\overrightarrow u  = \left( {2;1} \right)\),nên có vectơ pháp tuyền là \(\overrightarrow n  = \left( {1; - 2} \right)\) và đi qua \(A( - 1;5)\)

Ta có phương trình tổng quát là

 \((x + 1) - 2(y - 5) = 0 \Leftrightarrow x - 2y + 11 = 0\)

b) Đường thẳng \(d\) có vectơ pháp tuyến \(\overrightarrow n  = \left( {3; - 2} \right)\) nên có vectơ chỉ phương \(\overrightarrow u  = \left( {2;3} \right)\), và đi qua điểm \(B(4; - 2)\) nên ta có phương trình tham số của \(d\) là :

\(\left\{ \begin{array}{l}x = 4 + 2t\\y =  - 2 + 3t\end{array} \right.\)

Đường thẳng \(d\) đi qua điểm \(B(4; - 2)\) và có vectơ pháp tuyến \(\overrightarrow n  = \left( {3; - 2} \right)\)

Phương trình tổng quát của đường thẳng là:

\(3(x - 4) - 2(y + 2) = 0 \Leftrightarrow 3x - 2y - 16 = 0\)

c) Đường thẳng \(d\) có dạng \(y = ax + b\)

d đi qua \(P(1;1)\) và có hệ số góc \(k =  - 2\) nên ta có:

\(1 =  - 2.1 + b \Rightarrow b = 3\)

Suy ra đồ thị đường thẳng có dạng \(y =  - 2x + 3\)

Vậy đường thẳng có phương trình tổng quát là \(y + 2x - 3 = 0\)

Suy ra đường thẳng  có vectơ pháp tuyến \(\overrightarrow n  = \left( {2;1} \right)\), nên có vectơ chỉ phương là \(\overrightarrow u  = \left( {1; - 2} \right)\) và đi qua điểm \(P(1;1)\) nên ta có phương trình tham số của là :

\(\left\{ \begin{array}{l}x = 1 + t\\y = 1 - 2t\end{array} \right.\)

 d) Đường thẳng \(d\) đi qua hai điểm \(Q(3;0)\)và \(R(0;2)\) nên có vectơ chỉ phương \(\overrightarrow u  = \overrightarrow {QR}  = ( - 3;2)\) và có vectơ pháp tuyến \(\overrightarrow n  = (2;3)\)

Phương trình tham số của \(\Delta \) là: \(\left\{ \begin{array}{l}x = 3 - 3t\\y = 2t\end{array} \right.\)

Phương trình tổng quát của \(\Delta \) là: \(2(x - 3) + 3(x - 0) =  \Leftrightarrow 2x + 3y - 6 = 0\)

Angela mây linh
Xem chi tiết
Lê Khôi	Nguyên
16 tháng 4 2020 lúc 17:13

-3x+7=y

Khách vãng lai đã xóa
Lê Khôi	Nguyên
16 tháng 4 2020 lúc 17:13

y=-3x-5, nhầm

Khách vãng lai đã xóa
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
26 tháng 9 2023 lúc 23:55

a) Đường thẳng \(\Delta \) có vectơ pháp tuyến \(\overrightarrow n  = \left( {3;5} \right)\) nên có vectơ chỉ phương \(\overrightarrow u  = \left( {5; - 3} \right)\), nên ta có phương trình tham số của \(\Delta \) là :

 \(\left\{ \begin{array}{l}x = 1 + 5t\\y = 1 - 3t\end{array} \right.\)

Đường thẳng \(\Delta \) đi qua điểm \(A(1;1)\) và có vectơ pháp tuyến \(\overrightarrow n  = \left( {3;5} \right)\)

Phương trình tổng quát của đường thẳng là:

\(3(x - 1) + 5(y - 1) = 0 \Leftrightarrow 3x + 5y - 8 = 0\)

b) Đường thẳng \(\Delta \) đi qua gốc tọa độ \(O(0;0)\)và có vectơ chỉ phương \(\overrightarrow u  = \left( {2; - 7} \right)\), nên có phương trình tham số là:

\(\left\{ \begin{array}{l}x = 2t\\y =  - 7t\end{array} \right.\)

Đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u  = \left( {2; - 7} \right)\),nên có vectơ pháp tuyền là \(\overrightarrow n  = \left( {7;2} \right)\) và đi qua \(O(0;0)\)

Ta có phương trình tổng quát là

\(7(x - 0) + 2(y - 0) = 0 \Leftrightarrow 7x + 2y = 0\)

c) Đường thẳng \(\Delta \) đi qua hai điểm \(M(4;0),N(0;3)\) nên có vectơ chỉ phương \(\overrightarrow u  = \overrightarrow {MN}  = ( - 4;3)\) và có vectơ pháp tuyến \(\overrightarrow n  = (3;4)\)

Phương trình tham số của \(\Delta \) là: \(\left\{ \begin{array}{l}x = 4 - 4t\\y = 3t\end{array} \right.\)

Phương trình tổng quát của \(\Delta \) là: \(3(x - 4) + 4(x - 0) = 0 \Leftrightarrow 3x + 4y - 12 = 0\)

dũng nguyễn tiến
Xem chi tiết
Trần Xuân Ngọc
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 4 2018 lúc 12:44

Đáp án C

Mặt phẳng (Oxy) có phương trình là: z = 0.

Mặt phẳng này có vecto pháp tuyến là: k →  = (0; 0; 1)

Vì mặt phẳng (P) song song với mặt phẳng (Oxy)

nên mặt phẳng này nhận vecto  n p →  =  k →  = (0; 0; 1) làm vecto pháp tuyến.

Mặt khác (P) đi qua điểm M(1;-2;3) nên (P) có phương trình là:

1.(z - 3) = 0  z - 3 = 0

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
27 tháng 9 2023 lúc 0:02

a) \(\Delta \) song song với đường thẳng \(3x + y + 9 = 0\) nên nhận vectơ pháp tuyến của đường thẳng này làm vectơ pháp tuyến là \(\overrightarrow n  = \left( {3;1} \right)\)

\(\Delta \) đi qua điểm \(A(2;1)\) nên ta có phương trình tổng quát

  \(3\left( {x - 2} \right) + \left( {y - 1} \right) = 0 \Leftrightarrow 3x + y - 7 = 0\)

\(\Delta \) có vectơ pháp tuyến \(\overrightarrow n  = \left( {3;1} \right)\) nên có vectơ chỉ phương là \(\overrightarrow u  = \left( {1; - 3} \right)\)

Phương trình tham số của đường thẳng \(\Delta \) là:

 \(\left\{ \begin{array}{l}x = 2 + t\\y = 1 - 3t\end{array} \right.\)

b) \(\Delta \) vuông góc với đường thẳng \(2x - y - 2 = 0\) nên nhận vectơ pháp tuyến của đường thẳng này làm vectơ chỉ phương là \(\overrightarrow u  = \left( {2; - 1} \right)\)

\(\Delta \) đi qua điểm \(B( - 1;4)\) nên ta có phương trình tham số: \(\left\{ \begin{array}{l}x =  - 1 + 2t\\y = 4 - t\end{array} \right.\)

\(\Delta \) có vectơ chỉ phương \(\overrightarrow u  = \left( {2; - 1} \right)\) nên có vectơ pháp tuyến là \(\overrightarrow n  = \left( {1;2} \right)\)

Phương trình tổng quát của đường thẳng \(\Delta \)là:

  \(\left( {x + 1} \right) + 2\left( {y - 4} \right) = 0 \Leftrightarrow x + 2y - 7 = 0\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 6 2018 lúc 11:19

a) Phương trình đường thẳng Δ đi qua M(–5; –8) và có hệ số góc k = –3 là:

y = –3.(x + 5) – 8 ⇔ 3x + y + 23 = 0.

b) Ta có: A(2; 1), B(–4; 5) ⇒ Giải bài 2 trang 80 SGK hình học 10 | Giải toán lớp 10

Δ đi qua hai điểm A(2; 1) và B(–4; 5)

⇒ Δ nhận Giải bài 2 trang 80 SGK hình học 10 | Giải toán lớp 10 là một vtcp

⇒ Δ nhận Giải bài 2 trang 80 SGK hình học 10 | Giải toán lớp 10 là một vtpt.

Phương trình tổng quát của đường thẳng Δ là:

(Δ) : 4(x – 2) + 6(y -1) = 0

Hay 4x + 6y – 14 = 0 ⇔ 2x + 3y – 7 = 0.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
1 tháng 10 2023 lúc 20:20

a) Phương trình đường tròn tâm A bán kính AB là \({\left( {x + 1} \right)^2} + {y^2} = 17\)

b) Ta có \(\overrightarrow {{u_{AB}}}  = \overrightarrow {AB}  = \left( {4;1} \right) \Rightarrow \overrightarrow {{n_{AB}}}  = \left( {1; - 4} \right)\).

Phương trình AB là \(1\left( {x + 1} \right) - 4y = 0 \Leftrightarrow x - 4y + 1 = 0\).

c) Bán kính của đường tròn tâm O, tiếp xúc với đường thẳng AB là

\(R = d\left( {O,AB} \right) = \frac{{\left| {0 - 4.0 + 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 4} \right)}^2}} }} = \frac{1}{{\sqrt {17} }}\)

Phương trình đường tròn tâm O tiếp xúc AB là \({x^2} + {y^2} = \frac{1}{{17}}\)