Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 10:38

Mệnh đề \(P \Rightarrow Q\): “Nếu phương trình bậc hai \(a{x^2} + bx + c = 0\) có hai nghiệm phân biệt thì phương trình bậc hai \(a{x^2} + bx + c = 0\) có biệt thức \(\Delta  = {b^2} - 4ac\;\, > 0\).”

Mệnh đề \(Q \Rightarrow P\): “Nếu phương trình bậc hai \(a{x^2} + bx + c = 0\) có biệt thức \(\Delta  = {b^2} - 4ac\;\, > 0\) thì phương trình bậc hai \(a{x^2} + bx + c = 0\) có hai nghiệm phân biệt.”

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 3 2018 lúc 7:33

Giả sử  x 1 ,   x 2  là hai nghiệm của phương trình bậc hai a x 2  + bx + c = 0 có ∆’ = 0

Do đó, phương trình có nghiệm kép Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Chọn B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 12 2018 lúc 16:40

Đáp án: A

Bước 1 sai  vì giả sử phản chứng sai, phải giả sử phương trình vô nghiệm và a, c trái dấu.

Phan Đình Trung
Xem chi tiết
Tran Le Khanh Linh
19 tháng 8 2020 lúc 15:31

Câu 2: Theo định lý Vi-et ta có \(\hept{\begin{cases}x_1+x_2=-a\\x_1x_2=b\end{cases}}\)Bất Đẳng Thức cần chứng minh có dạng

\(\frac{x_1}{1+x_1}+\frac{x_2}{1+x_2}\ge\frac{2\sqrt{x_1x_2}}{1+\sqrt{x_1x_2}}\)Hay \(\frac{x_1}{1+x_2}+1+\frac{x_2}{1+x_1}+1\ge\frac{2\sqrt{x_1x_2}}{1+\sqrt{x_1x_2}}+2\)

\(\left(x_1+x_2+1\right)\left(\frac{1}{1+x_1}+\frac{1}{1+x_2}\right)\ge\frac{2\left(1+2\sqrt{x_1x_2}\right)}{1+\sqrt{x_1x_2}}\)Theo Bất Đẳng Thức Cosi ta có

\(x_1+x_2+1\ge2\sqrt{x_1x_2}+1\)Để chứng minh (*) ta quy về chứng minh

\(\frac{1}{1+x_1}+\frac{1}{1+x_2}\ge\frac{2}{1+\sqrt{x_1x_2}}\)với \(x_1;x_2>1\). Quy đồng rồi rút gọn Bất Đẳng Thức trên tương đương với

\(\left(\sqrt{x_1x_2}-1\right)\left(\sqrt{x_1}-\sqrt{x_2}\right)^2\ge0\)(Điều này hiển nhiên đúng)

Dấu "=" xảy ra khi và chỉ khi \(x_1=x_2\Leftrightarrow a^2=4b\)

Khách vãng lai đã xóa
Phan Đình Trung
19 tháng 8 2020 lúc 20:58

Bạn ơi thế a^2 - 4b ở vế trái bạn vứt đi đâu r ????

Khách vãng lai đã xóa
Nguyễn Ngọc Lan Thy
Xem chi tiết
alibaba nguyễn
31 tháng 5 2017 lúc 9:47

Theo Vi et ta có: \(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}\\x_1x_2=\frac{c}{a}\end{cases}}\)

Theo giả thuyết thì:

\(x_1^2+x_2^2=2x_1x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\)

\(\Leftrightarrow\frac{b^2}{a^2}-\frac{4c}{a}=0\)

\(\Leftrightarrow b^2-4ac=0\)

Vậy ta có ĐPCM

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 8 2019 lúc 16:12

Câu hỏi Ôn tập chương 4 phần Đại Số 9 | Giải toán lớp 9

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 2 2017 lúc 17:25

Câu hỏi Ôn tập chương 4 phần Đại Số 9 | Giải toán lớp 9

nguyễn minh quý
Xem chi tiết
Phạm Nguyễn Bích Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 6 2023 lúc 19:30

x1+x2=-b/a; x1x2=c/a

=>2x1+2x2=-2b/a; 4x1x2=4c/a

=>PT cần tìm là x^2+2b/a*x+4c/a=0