Tìm các cặp số nguyên dương a,b,c thỏa mãn
4a+19=3^b; 2a+5=3^c
a) Tập hợp các số nguyên n để A nhận giá trị nguyên, \(A=\frac{44}{2n-3}\)
b) Số các số nguyên x thỏa mãn \(15-|-2x+3|.|5+4x|=-19\)
c) Cặp số nguyên dương (x ; y) thỏa mãn |(x2+2).(y+1)|=9
d) Tìm các số nguyên dương x ; y biết |x-2y+1|.|x+4y+3|=20
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)
Tìm số nguyên dương a, b, c thỏa mãn a.b = c; b.c = 4a; a.c = 9b
Tìm tất cả các số nguyên tố a, b, c và các số nguyên dương d thỏa mãn a 2 + b 2 + c 2 = 9d 2 + 19 giúp mik vs
tìm tất cả các cặp số nguyên (a,b) thỏa mãn 4a+1 và 4b-1 nguyên tố cùng nhau và a+b là ước của 16ab+1
Cho số nguyên dương a,b,c thỏa mãn a + b + c = 3 . Tìm giá trị nhỏ nhất của \(A=4a^2+3b^2+8c^2\)
tìm các cặp số nguyên dương (a,b) thỏa mãn:\(\frac{a}{3}\)=\(\frac{1}{a+b}\)
\(\frac{a}{3}\)=\(\frac{1}{a+b}\)
a(a+b)=3=1.3( vì a b nguyên dương không lấy giá trị âm)
th1 a=1 => a+b=3 => b=2
TH2 a=3 => a+b=1 => b= -2 loại
\(\frac{a}{3}=\frac{1}{a+b}\)
a(a + b) = 3 = 3 . 1 = (-3) . (-1)
TH1: a= 3
3 + b = 1 => b= -2
TH2: a = 1
1 + b = 3 => b = 2
TH3: a = -1
-1 + b = -3 => b = -2
TH4: a = -3
-3 + b = -1 => b = 2
vậy (a ; b) = (3 ; -2) ; (1 ; 2) ; (-1 ; -2) ; (-3 ; 2)
Tìm số cặp a,b nguyên dương thỏa mãn (1+1/a)*(1+1/b)=3/2
tìm tất cả các số nguyên dương a,b,c là độ dài 3 cạnh của 1 tam giác thỏa mãn
\(\sqrt{\dfrac{19}{A+B-C}}+\sqrt{\dfrac{5}{B+C-A}}+\sqrt{\dfrac{79}{B+C-A}}\in N\ne1\)