1. Phân tích đa thức thành nhân tử: a) 2x^3-6x^2y+6xy^2-2y^3 ; 2. Tìm x biết : 3x-4x^2=0
Phân tích đa thức sau thành nhân tử a.(x^2+1)^2-x^2 b.(x^2-6xy)+9y^2 c.5x^3-10x^2y+5xy^2 d.x^2-6x+9 e.4x(2y-z)-7y(z-2y)
a: =(x^2-x+1)(x^2+x+1)
b: =x^2-6xy+9y^2=(x-3y)^2
c: =5x(x^2-2xy+y^2)
=5x(x-y)^2
d: =(x-3)^2
e: =(2y-z)(4x+7y)
a)HĐT:(x^2+1-x)(x^2+1+x)
b)=x^2-2.x.3y+(3y)^2
c)=5x(x^2-2xy+y^2)
=5x(x-y)^2
d)x^2-2.3.x+3^2
=(x-3)^2
e)(2y-z)+7y(2y-z)
=(2y-z)(1+7y)
Phân tích đa thức thành nhân tử:
a)xy+3x-7y-21
b)2xy-15-6x-5y
c)2x^2y+2xy^2-2x-2y
Phân tích các đa thức sau thành nhân tử:
x(x+3)-5x(x-5)-5(x+3)
a) xy+3x-7y-21
=x(y+3)-7(x+3)
=(x-7)(y+3)
b)2xy-15-6x-5y
=2x(y-3)-5(-3+y)
=(2x-5)(y-3)
c)2x^2y+2xy^2-2x-2y
=2x(xy-1)+2y(xy-1)
=(2x+2y)(xy-1)
x(x+3)-5x(x-5)-5(x+3)
=(x-5)(x+3)-5x(x-5)
=(x-5)(x+3-5x)
Câu cuối mình bị nhầm dòng cuối phải là (x-5)(x+3+x-5)=(x-5)(2x-2)nha bạn
a) xy+3x-7y-21=(xy+3x)-(7y+21)= x(y+3)-7(y+3)=(y+3)(x-7)
b)2xy-15-6x+5y=(2xy-6x)+(5y-15)=2x(y-3)+5(y-3)=(y-3)(2x+5)
c)2x^2y+2xy^2-2x-2y=2xy(x+y)-2(x+y)=2(x+y)(xy-1)
d) x(x+3)-5x(x-5)-5(x+3)=[x(x+3)-5(x+3)]-5x(x-5)=(x+3)(x-5)-5x(x-5)=(x-5)(x+3-5x)=(x-5)(3-4x)
phân tích đa thức thành nhân tử
\(x^3+6x^2y+12xy^2+9y^3\)
\(9x^3+12x^2y+6xy^2+y^3\)
\(a.=x^3+3x^2y+3x^2y+9xy^2+3xy^2+9y^3\)
\(=x^2\left(x+3y\right)+3xy\left(x+3y\right)+3y^2\left(x+3y\right)\)
\(=\left(x+3y\right)\left(x^2+3xy+3y^2\right).\)
\(b.=9x^3+3x^2y+9x^2y+3xy^2+3xy^2+y^3\)
\(=3x^2\left(3x+y\right)+3xy\left(3x+y\right)+y^2\left(3x+y\right)\)
\(=\left(3x^2+3xy+y^2\right)\left(3x+y\right)\).
phân tích đa thức thành nhân tử
\(a)3x^3+6x^2y \)
\(b)2x^3-6x^2\)
\(c)18x^2-20xy\)
\(d)xy+y^2-x-y \)
\(e)(x^2y^2-8)^2-1\)
\(f)x^2-7x-8\)
\(g)10x^2(2x-y)+6xy(y-2x)\)
\(h)x^2-2x+1-y^2\)
\(i)2x(x+2)+x^2(-x-2)\)
\(k)-9+6x-x^2\)
\(l)8xy-2x^2-8y^2\)
\(m)3x^2+5x-3y^2-5y\)
a) 3x³ + 6x²y
= 3x².(x + 2y)
b) 2x³ - 6x²
= 2x².(x - 2)
c) 18x² - 20xy
= 2x.(9x - 10y)
d) xy + y² - x - y
= (xy + y²) - (x + y)
= y(x + y) - (x + y)
= (x + y)(y - 1)
e) (x²y² - 8)² - 1
= (x²y² - 8 - 1)(x²y² - 8 + 1)
= (x²y² - 9)(x²y² - 7)
= (xy - 3)(xy + 3)(x²y² - 7)
f) x² - 7x - 8
= x² - 8x + x - 8
= (x² - 8x) + (x - 8)
= x(x - 8) + (x - 8)
= (x - 8)(x + 1)
a: \(3x^3+6x^2y\)
\(=3x^2\cdot x+3x^2\cdot2y=3x^2\left(x+2y\right)\)
b: \(2x^3-6x^2=2x^2\cdot x-2x^2\cdot3=2x^2\left(x-3\right)\)
c: \(18x^2-20xy=2x\cdot9x-2x\cdot10y=2x\left(9x-10y\right)\)
d: \(xy+y^2-x-y\)
\(=y\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(y-1\right)\)
e: \(\left(x^2y^2-8\right)^2-1\)
\(=\left(x^2y^2-8-1\right)\left(x^2y^2-8+1\right)\)
\(=\left(x^2y^2-7\right)\left(x^2y^2-9\right)\)
\(=\left(x^2y^2-7\right)\left(xy-3\right)\left(xy+3\right)\)
f: \(x^2-7x-8\)
\(=x^2-8x+x-8\)
\(=x\left(x-8\right)+\left(x-8\right)=\left(x-8\right)\left(x+1\right)\)
g: \(10x^2\left(2x-y\right)+6xy\left(y-2x\right)\)
\(=2x\cdot\left(2x-y\right)\cdot5x-2x\cdot\left(2x-y\right)\cdot3y\)
\(=2x\left(2x-y\right)\left(5x-3y\right)\)
h: \(x^2-2x+1-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right)\left(x-1+y\right)\)
i: \(2x\left(x+2\right)+x^2\left(-x-2\right)\)
\(=2x\left(x+2\right)-x^2\left(x+2\right)\)
\(=\left(x+2\right)\left(2x-x^2\right)=x\cdot\left(x+2\right)\left(2-x\right)\)
k: \(-x^2+6x-9=-\left(x^2-6x+9\right)\)
\(=-\left(x^2-2\cdot x\cdot3+3^2\right)=-\left(x-3\right)^2\)
l: \(-2x^2+8xy-8y^2\)
\(=-2\left(x^2-4xy+4y^2\right)\)
\(=-2\left(x-2y\right)^2\)
m: \(3x^2+5x-3y^2-5y\)
\(=3\left(x^2-y^2\right)+5\left(x-y\right)\)
\(=3\left(x-y\right)\left(x+y\right)+5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x+3y+5\right)\)
g) 10x²(2x - y) + 6xy(y - 2x)
= 10x²(2x - y) - 6xy(2x - y)
= 2x(2x - y)(5x - 3y)
h) x² - 2x + 1 - y²
= (x² - 2x + 1) - y²
= (x - 1)² - y²
= (x - y - 1)(x + y - 1)
i) 2x(x + 2) + x² (-x - 2)
= 2x(x + 2) - x²(x + 2)
= x(x + 2)(2 - x)
k) -9 + 6x - x²
= -(x² - 6x + 9)
= -(x - 3)²
l) 8xy - 2x² - 8y²
= -2(x² - 4xy + 4y²)
= -2(x - 2y)²
m) 3x² + 5x - 3y² - 5y
= (3x² - 3y²) + (5x - 5y)
= 3(x² - y²) + 5(x - y)
= 3(x - y)(x + y) + 5(x - y)
= (x - y)[3(x + y) + 5]
= (x - y)(3x + 3y + 5)
Phân tích đa thức thành nhân tử:
a/ 2x^2-2y^2-6x-6y
b/x^3+3x^2-3x-1
a) 2x2-2y2-6x-6y = ( 2x2-2y2)- ( 6x+6y)
= 2(x2-y2)- 6(x+y)
2( x+y )- 6( x+y )
..........
b) x^3 +3x^2 - 3x -1= (x^3-1) +(3x^2-3x)
= (x3-1)+ 3x( x-y)
.......
Những dòng mình .... là đến đấy đơn giản rồi, đặt nhân tử chung là đc
=
#Vũ Khánh Linh câu a/ dòg thứ 3 hình như sai sai.... @@
à ừ mình nhầm để mk sửa
a/ 2x^2-2y^2-6x-6y= ( 2x^2-2y^2)-(6x+6y)
= 2( x^2-y^2)- 6(x+y)
= 2( x+y) (x-y) -6(x+y)
A,1/3x^2y+1/6xy^2-1/9xy B,a^3+3a^2+3a-7 PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
C,2x(2x-1)-2x^2
a) \(\frac{1}{3}x^2y+\frac{1}{6}xy^2-\frac{1}{9}xy\)
\(=xy\left(\frac{1}{3}x+\frac{1}{6}y-\frac{1}{9}\right)\)
b) \(a^3+3a^2+3a-7\)
\(=\left(a^3+3a^2+3a+1\right)-8\)
\(=\left(a+1\right)^3-2^3\)
\(=\left(a+1-2\right)\left[\left(a+1\right)^2+2\left(a+1\right)+2^2\right]\)
\(=\left(a-1\right)\left(a^2+2a+1+2a+2+4\right)\)
\(=\left(a-1\right)\left(a^2+4a+7\right)\)
c) \(2x\left(2x-1\right)-2x^2\)
\(=4x^2-2x-2x^2\)
\(=2x^2-2x=2x\left(x-1\right)\)
Phân tích mỗi đa thức sau thành nhân tử
a)x^3-2x^2y+xy^2+xy
b)x^3+4x^2y+4xy^2-9x
c)x^3-y^3+x-y
d)4x^2-4xy+2x-y+y^2
e)9x^2-3x+2y-4y^2
f)3x^2-6xy+3y^2-5x+5y
a) Xem lại đề
b) x³ - 4x²y + 4xy² - 9x
= x(x² - 4xy + 4y² - 9)
= x[(x² - 4xy + 4y² - 3²]
= x[(x - 2y)² - 3²]
= x(x - 2y - 3)(x - 2y + 3)
c) x³ - y³ + x - y
= (x³ - y³) + (x - y)
= (x - y)(x² + xy + y²) + (x - y)
= (x - y)(x² + xy + y² + 1)
d) 4x² - 4xy + 2x - y + y²
= (4x² - 4xy + y²) + (2x - y)
= (2x - y)² + (2x - y)
= (2x - y)(2x - y + 1)
e) 9x² - 3x + 2y - 4y²
= (9x² - 4y²) - (3x - 2y)
= (3x - 2y)(3x + 2y) - (3x - 2y)
= (3x - 2y)(3x + 2y - 1)
f) 3x² - 6xy + 3y² - 5x + 5y
= (3x² - 6xy + 3y²) - (5x - 5y)
= 3(x² - 2xy + y²) - 5(x - y)
= 3(x - y)² - 5(x - y)
= (x - y)[(3(x - y) - 5]
= (x - y)(3x - 3y - 5)
phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
1) x^3 - x^2 - x + 1
2)x^4 + 6x^2y +9y^2 - 1
3)x^3 + x^2y - 4x - 4y
4)3x^2- 6xy + 3y^2 - 12z^2
\(x^3-x^2-x+1\)
\(=x^2\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-1\right)\)
bài 1 phân tích đa thức sau thành nhân tử
a, 12x^3 - 6x^2 + 3x
b, 2/5x^2 + 5X^3 + x^2y
c, 14x^2y - 21xy^2 + 28x^2y^2
a: \(12x^3-6x^2+3x\)
\(=3x\cdot4x^2-3x\cdot2x+3x\cdot1\)
\(=3x\left(4x^2-2x+1\right)\)
b: \(\dfrac{2}{5}x^2+5x^3+x^2y\)
\(=x^2\cdot\dfrac{2}{5}+x^2\cdot5x+x^2\cdot y\)
\(=x^2\left(\dfrac{2}{5}+5x+y\right)\)
c: \(14x^2y-21xy^2+28x^2y^2\)
\(=7xy\cdot2x-7xy\cdot3y+7xy\cdot4xy\)
\(=7xy\left(2x-3y+4xy\right)\)