Tìm giá trị nhỏ nhất và lớn nhất của các hàm số đó trên [ -2; 2] y = x 2 + x 2 - 2 x + 1
A. max y= 5; min y=2
B. max y= 4; min y=1
C. max y= 4; min y= 1
D. max y= 5; min y= 1
Tìm tích của giá trị nhỏ nhất và lớn nhất của các hàm số đó trên [ -2;2] y = x 2 + 4 x + 4 - x + 1
A. 0
B. -1
C. -2
D. 1
Ta có:
Bảng biến thiên
Ta có y(-2) = -1; y(2) =1
Dựa vào bảng biến thiên ta có
Tích giá trị lớn nhất và giá trị nhỏ nhất là: 1.(-1) = - 1.
Chọn B.
tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số bạc hai y = -2x2 + 4x + 3
tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số bậc hai y = -3x2 + 2x + 1 trên (1;3)
tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số bậc hai y = x2 - 4x - 5 trên (-1;4)
Câu 1:
$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$
Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$
Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.
Câu 2:
Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$
Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$
Với $x\in (1;3)$ thì hàm luôn nghịch biến
$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$
$\Rightarrow$ hàm không có min, max.
Câu 3:
$y=x^2-4x-5$ có $a=1>0, b=-4; c=-5$ có trục đối xứng $x=\frac{-b}{2a}=2$
Do $a>0$ nên hàm nghịch biến trên $(-\infty;2)$ và đồng biến trên $(2;+\infty)$
Với $x\in (-1;4)$ vẽ BTT ta thu được $y_{\min}=f(2)=-9$
1/ tìm TXĐ chủa hàm số y = căn 1 - cosx /2 + sinx.
2/ tìm tập giá trị của hàm số y = 2-cos2x.
3/ Tìm giá trị lớn nhất và nhỏ nhất của các hàm số sau :
a) y=1 + 2sinx b)y=1 - 2cos^2x
4/ Tìm giá trị nhỏ nhất của hàm số y=tan^2x - 2tanx +3.
1. Không dịch được đề
2.
\(-1\le cos2x\le1\Rightarrow1\le y\le3\)
3.
a. \(-2\le2sinx\le2\Rightarrow-1\le y\le3\)
\(y_{min}=-1\) khi \(sinx=-1\Rightarrow x=-\dfrac{\pi}{2}+k2\pi\)
\(y_{max}=3\) khi \(sinx=1\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)
b.
\(0\le cos^2x\le1\Rightarrow-1\le y\le2\)
\(y_{min}=-1\) khi \(cos^2x=1\Rightarrow x=k\pi\)
\(y_{max}=2\) khi \(cosx=0\Rightarrow x=\dfrac{\pi}{2}+k\pi\)
4.
\(y=\left(tanx-1\right)^2+2\ge2\)
\(y_{min}=2\) khi \(tanx=1\Rightarrow x=\dfrac{\pi}{4}+k\pi\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số y = 2 - cos x
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau:
a) trên khoảng (− ∞ ;+ ∞ );
b) trên khoảng
a) trên khoảng (− ∞ ;+ ∞ );
Từ đó ta có min f(x) = −1/4; max f(x) = 1/4
b) trên khoảng
y′ = 0 ⇔ x = π
Hàm số không có giá trị nhỏ nhất. Giá trị lớn nhất của hàm số là: max y = y(π) = −1.
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: f(x) = | x 2 – 3x + 2| trên đoạn [-10; 10]
f(x) = | x 2 − 3x + 2| trên đoạn [-10; 10]
Khảo sát sự biến thiên và vẽ đồ thị của hàm số g(x) = x 2 – 3x + 2.
Ta có:
g′(x) = 2x − 3; g′(x) = 0 ⇔ x = 3/2
Bảng biến thiên:
Vì
nên ta có đồ thị f(x) như sau:
Từ đồ thị suy ra: min f(x) = f(1) = f(2) = 0; max = f(x) = f(−10) = 132
Tìm giá trị lớn nhất và nhỏ nhất của các hàm số sau trên các khoảng, đoạn tương ứng: f(x) = x 4 – 4 x 2 + 1 trên đoạn [-1; 2]
min f(x) = f( 2 ) = −3; max f(x) = f(2) = f(0) = 1
Tìm các giá trị lớn nhất và nhỏ nhất của hàm số y = x 2 3 ( 20 - x ) trên đoạn [1; 10]
A. m a x 1 ; 10 y = 8 ; m i n 1 ; 10 = 0
B. m a x 1 ; 10 y = 48 ; m i n 1 ; 10 = 10 5 3
C. m a x 1 ; 10 y = 15 . 5 2 3 ; m i n 1 ; 10 = 19
D. m a x 1 ; 10 y = 48 ; m i n 1 ; 10 = 19
y' = 0 <=> x = 8
Ta có: y(1) = 19, y(8) = 48, y ( 10 ) = 10 5 3 ≈ 46 , 6 > 19
Từ đó:
Chọn D
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: f(x) = 2sinx + sin2x trên đoạn [0; 3 π /2]
f(x) = 2sinx + sin2x trên đoạn [0; 3 π /2]
f′(x) = 2cosx + 2cos2x = 4cos(x/2).cos3(x/2)
f′(x) = 0
⇔
Ta có: f(0) = 0,
Từ đó ta có: min f(x) = −2 ; max f(x) = 3 3 /2