Đường tròn có tâm I(1; 2), bán kính R = 3 có phương trình là:
A. x 2 + y 2 + 2 x + 4 y − 4 = 0.
B. x 2 + y 2 + 2 x − 4 y − 4 = 0.
C. x 2 + y 2 − 2 x + 4 y − 4 = 0.
D. x 2 + y 2 − 2 x − 4 y − 4 = 0.
Lập phương trình đường tròn trong mỗi trường hợp sau:
a) Đường tròn có tâm I(- 3 ; 4) bán kính R = 9;
b) Đường tròn có tâm I(5 ;-2) và đi qua điểm M(4;- 1);
c) Đường tròn có tâm I(1;- 1) và có một tiếp tuyến là A: 5x- 12y – 1 = 0;
d) Đường tròn đường kính AB với A(3;-4) và B(-1; 6);
e) Đường tròn đi qua ba điểm A(1;1), B(3; 1), C(0; 4).
a) Phương trình đường tròn là: \({\left( {x + 3} \right)^2} + {\left( {y - 4} \right)^2} = 81\)
b) Bán kính đường tròn là: \(R = IM = \sqrt {{{\left( {4 - 5} \right)}^2} + {{\left( { - 1 + 2} \right)}^2}} = \sqrt 2 \)
Phương trình đường tròn là: \({\left( {x - 5} \right)^2} + {\left( {y + 2} \right)^2} = 2\)
c) Bán kính đường tròn là: \(R = \frac{{\left| {5.1 - 12.\left( { - 1} \right) - 1} \right|}}{{\sqrt {{5^2} + {{\left( { - 12} \right)}^2}} }} = \frac{{16}}{{13}}\)
Phương trình đường tròn là: \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = {\left( {\frac{{16}}{{13}}} \right)^2}\)
d) Gọi \(I\left( {a;b} \right)\) là trung điểm AB. Vậy tọa độ điểm I là: \(I\left( {1;1} \right)\)
Bán kính đường tròn là: \(R = IA = \sqrt {{{\left( {3 - 1} \right)}^2} + {{\left( { - 4 - 1} \right)}^2}} = \sqrt {29} \)
Phương trình đường tròn là: \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 29\)
e) Giả sử tâm đường tròn là điểm \(I\left( {a;b} \right)\). Ta có: \(IA = IB = IC \Leftrightarrow I{A^2} = I{B^2} = I{C^2}\)
Vì \(I{A^2} = I{B^2},I{B^2} = I{C^2}\) nên: \(\left\{ \begin{array}{l}{\left( {1 - a} \right)^2} + {\left( {1 - b} \right)^2} = {\left( {3 - a} \right)^2} + {\left( {1 - b} \right)^2}\\{\left( {3 - a} \right)^2} + {\left( {1 - b} \right)^2} = {\left( {0 - a} \right)^2} + {\left( {4 - b} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 3\end{array} \right.\) b
Vậy \(I\left( {2;3} \right)\) và \(R = IA = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} = \sqrt 5 \)
Vậy phương trình đường tròn đi qua 3 điểm A,B, C là: \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 5\)
1. viết phương trình đường tròn ngoại tiếp tam giác ABC biết A(-1,1);B(1,3);C(1,-1)
2. viết phương trình đường tròn có tâm I(-2,3) và đi qua M(2,-3)
3. viết phương trình đường tròn có tâm I nằm trên đường thẳng 4x-2y-8=0 biết đường tròn đó tiếp xúc với trục tọa độ
Vẽ đường tròn tâm O và tâm I bán kính 2cm, trong đó điểm I nằm trên đường tròn (O) và cắt nhau tại A, B.
a) Vẽ các đường tròn tâm A, tâm B bán kính 2cm.
b) Hai đường tròn trên có đi qua O và I không? Chúng có cắt nhau không? Vì sao?
a) HS tự vẽ hình.
b) Hai đường tròn trên có đi qua O và I. Chúng có cắt nhau.
Vẽ đường tròn tâm O và tâm I bán kính 2cm, trong đó điểm I nằm trên đường tròn (O) và cắt nhau tại A, B.
a) Vẽ các đường tròn tâm A, tâm B bán kính 2cm.
b) Hai đường tròn trên có đi qua O và I không? Chúng có cắt nhau không? Vì sao?
a) HS tự vẽ hình.
b) Hai đường tròn trên có đi qua O và I. Chúng có cắt nhau.
Cho đường tròn tâm O , đường kính AB = 2R . Điểm C nằm giữa hai điểm A và B , vẽ đường tròn tâm I đường kính CA và đường tròn tâm K đường kính CB . Qua C kẻ đường thẳng vuông góc với AB cắt đường tròn tâm O tại D và E đoạn thẳng DA cắt đường tròn tâm I
tại M vs DB cắt đường tròn tâm K tại N
a) CMR 4 điểm C,M,Đ,N cùng thuộc 1 đường tròn
b) CMR MN là tiếp tuyến của đường tròn tâm I và K
c) xác định vj trí điểm C trên đường kính AB sao cho tứ giác CMDN có S lớn nhất
1 hình tròn tâm o có đường kính gấp 2 lần đườn kính tâm i .Hỏi s hình tròntaamo gấp mấy lần s hình tròn tâm i
gọi a là đường kính đường tròn tâm I => đường kính đường tròn tâm O là 2a
Stâm I = d x 3,14 = a x 3,14 = 3,14a
Stâm O= d x 3,14 = 2a x 3,14 = 6,28a
Stâm O / Stâm I = 6,28a / 3,14a = 2
Vậy Stâm O gấp 2 lần Stâm I
Giả sử đường kính của hình tròn tâm o là 4 thì đường kính của hình tròn tâm i là 4:2=2
Bán kính của hình tròn tâm o là:
4:2=2
Bán kính của hình tròn tâm i là:
2:2=1
Diện tích của hình tròn tâm o là:
2x2x3,14=12,56
Diện tích của hình tròn tâm i là:
1x1x3,14=3,14
Diện tích hình tròn tâm o gấp số lần diện tích hình tròn tâm i là:
12,56:3,14=4 (lần)
Đáp số:4 lần
Cho đường tròn tâm O, đường kính AB, C là điểm di động trên đường tròn tâm O. I là tâm đường tròn nội tiếp tam giác ABC. Ta có:
A. I thuộc cung chứa góc dựng trên đoạn AB
B. I thuộc cung chứa góc 45 0 dựng trên đoạn AB
C. I thuộc cung chứa góc 135 0 dựng trên đoạn AB
D. I nằm trên đoạn AB
Đáp án là B
Do AB là đường kính đường tròn (O); C nằm trên đường tròn nên ΔCAB vuông tại C
Mặt khác tâm đường tròn nội tiếp là giao điểm 3 đường phân giác trong
⇒ I thuộc cung chứa góc 45 0 dựng trên đoạn AB.
Cho đường tròn tâm O , đường kính AB = 2R . Điểm C nằm giữa hai điểm A và B , vẽ đường tròn tâm I đường kính CA và đường tròn tâm K đường kính CB . Qua C kẻ đường thẳng vuông góc với AB cắt đường tròn tâm O tại D và E đoạn thẳng DA cắt đường tròn tâm I
tại M vs DB cắt đường tròn tâm K tại N
a) CMR 4 điểm C,M,Đ,N cùng thuộc 1 đường tròn
b) CMR MN là tiếp tuyến của đường tròn tâm I và K
c) xác định vj trí điểm C trên đường kính AB sao cho tứ giác CMDN có S lớn nhất
Giúp mình với
Mệnh đề nào sau đây đúng?
(1) Đường tròn (C1) : x2+ y2 – 2x +4y - 4= 0 có tâm I( 1; -2) bán kính R= 3.
(2) Đường tròn (C2) x2+ y2 – 5x +3y – 0,5= 0 có tâm bán I 5 2 ; - 3 2 kính R= 3.
A. Chỉ (1).
B. Chỉ (2).
C.cả hai
D. Không có.
Ta có: đường tròn (C1) :
Vậy (1) đúng
Đường tròn ( C2):
Vậy (2) đúng.
Chọn C.
Cho đường tròn tâm O và dây AB cố định, điểm M tùy ý thay đổi trên đoạn AB. Qua A và M dựng đường tròn tâm I tiếp xúc đường tròn tâm O tại A. Qua B và M dựng đường tròn tâm J tiếp xúc đường tròn tâm O tại B. 2 đường tròn tâm I và đường tròn tâm J cắt nhau tại điểm thứ 2 là N. CMR MN luôn đi qua 1 điểm cố định