Cho hàm số bậc nhất y = (m - 2)x + m + 1 với m là tham số
1. Tìm m để (d) đi qua điểm A(1; -1). Vẽ (d) với m vừa tìm được.
2. Với giá trị nào của m thì (d) và đường thẳng (d’) : y = 1 - 3x song song với nhau?
3. Tìm m để khoảng cách từ O đến (d) = 1
Cho hàm số bậc nhất y = (m - 2)x + m + 1 với m là tham số có đồ thị là đường thẳng (d).
1. Tìm m để (d) đi qua điểm A(1; -1). Vẽ (d) với m vừa tìm được.
2. Với giá trị nào của m thì (d) và đường thẳng (d’) : y = 1 - 3x song song với nhau?
3. Tìm m để khoảng cách từ gốc toạ độ O đến (d) = 1
1: Thay x=1 và y=1 vào (d), ta được:
2m-1=-1
hay m=0
Cho hàm số bậc nhất y = (m – 4)x+m+l (m là tham số) có đồ thị là đường thẳng d. Tim m để d:
a, Đi qua điểm A(1; –1). Vẽ d với m vừa tìm được
b, Song song với đường thẳng d': y = l – 2x
a, Vì d đi qua A nên thay tọa độ của A vào phương trình của d ta tìm được m=1
HS tự vẽ d trong trường hợp m=1
b, Để d //d' => m - 4 = - 2 m + 1 ≠ 1 ⇔ m = 2 m ≠ 0 => m = 2
Cho hàm số bậc nhất y=(m+1)x-3 có đồ thị hàm số là đường thẳng d (m là tham số, m khác -1)
a) Tìm m để (d) đi qua E(4; 1) và vẽ đồ thị hàm số với m tìm được.
b) Cho (d’): y=5x-8 . Tìm m để (d) ⊥(d’).
c) Tìm m để đường thẳng (d) cắt đường thẳng y=3x-1 tại điểm có hoành độ bằng 2, tìm tọa độ giao điểm.
d) Xác định m để (d) cắt hai trục Ox, Oy tại A và B sao cho tam giác AOB có diện tích bằng 2 (đơn vị diện tích).
a: Thay x=4 và y=1 vào y=(m+1)x-3, ta được:
4(m+1)-3=1
=>4m+4-3=1
=>4m+1=1
hay m=0
b: Để hai đường vuông góc thì 5(m+1)=-1
=>m+1=-1/5
hay m=-6/5
c: Thay x=2 vào y=3x-1, ta được:
\(y=3\cdot2-1=5\)
Thay x=2 và y=5 vào (d), ta được:
2(m+1)-3=5
=>2(m+1)=8
=>m+1=4
hay m=3
cho hàm số bậc nhất y=(m-2)x+m+1 ( với m là tham số m khác 2 ) a) tìm các giá trị của m để đồ thi hàm số đã cho đi qua A(1;-1) b) tìm các giá trị của m đẻ đồ thị của m để đồ thị hàm số đã cắt cho đường thẳng y=x+2 tại 1 điểm trên trục hoành
a: Thay x=1 và y=-1 vào (d), ta được:
\(\left(m-2\right)\cdot1+m+1=-1\)
=>m-2+m+1=-1
=>2m-1=-1
=>2m=0
=>m=0
b: Thay y=0 vào y=x+2, ta được:
x+2=0
=>x=-2
Thay x=-2 và y=0 vào y=(m-2)x+m+1, ta được:
-2(m-2)+m+1=0
=>-2m+4+m+1=0
=>5-m=0
=>m=5
Cho hàm số bậc nhất y=(2m-1)x-2m+5(m là tham số) có đồ thị là đường thẳng (d) và hàm số y=2x+1 có đồ thị là đường thẳng (d')
a. tìm giá trị của m để đường thẳng(d) đi qua điểm A(2;-3)
b. tìm giá trị của m để đường thẳng(d) song song với đường thẳng (d') .với giá trị m vừa tìm được ,vẽ đường thẳng(d) và tính góc α tạo bởi đường thẳng (d) và trục Ox ( làm tròn đến phút)
a: Thay x=2 và y=-3 vào (d), ta được:
\(2\left(2m-1\right)-2m+5=-3\)
=>\(4m-2-2m+5=-3\)
=>2m+3=-3
=>2m=-6
=>\(m=-\dfrac{6}{2}=-3\)
b: Để (d)//(d') thì \(\left\{{}\begin{matrix}2m-1=2\\-2m+5\ne1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m=3\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne2\end{matrix}\right.\)
=>m=3/2
Thay m=3/2 vào (d), ta được:
\(y=\left(2\cdot\dfrac{3}{2}-1\right)x-2\cdot\dfrac{3}{2}+5=2x+2\)
y=2x+2 nên a=2
Gọi \(\alpha\) là góc tạo bởi (d) với trục Ox
\(tan\alpha=2\)
=>\(\alpha\simeq63^026'\)
Cho hàm số y = (√m-1 -1)x + 2m + 3 với m là tham số
a, Tìm m để hàm số (1) là hàm số bậc nhất
b, Tìm m để đồ thị hàm số (1) đi qua A(1;2m+9)
BÀI 1 : cho hàm số bậc nhất y=mx+1 với m là tham số . tìm m để đồ thị hàm số đi qua điểm A(1;4). với giá trị m vừa tìm được ,hàm số đồng biến hay nghịch biến
Thay x=1 và y=4 vào (d), ta được:
m+1=4
hay m=3
Vậy: Hàm số đồng biến trên R
Do đồ thị hàm số qua A, thay tọa độ A vào phương trình ta được:
\(4=m.1+1\Rightarrow m=3\)
\(\Rightarrow y=3x+1\)
Do \(a=3>0\Rightarrow\) hàm số đồng biến
với giá trị m vừa tìm được hàm số đồng biến hay nghịch biến trên R
Bài 8. Cho hàm số y = (m - 2)x + m + 1 (d)
1) Với giá trị nào của m thì hàm số đã cho là hàm số bậc nhất ?
2) Tìm giá trị của m để đường thẳng (d) đi qua gốc tạo độ
3) Tim giá trị của m để đường thẳng (d) đi qua điểm A(2; 3)
4) Tìm giá trị của m để đường thẳng (d) tạo với trục Ox một góc tù
5) Tim m để đường thẳng (d) song song với đường thẳng y 3x +2 (d1)
Cho hàm số bậc nhất y = (m - 2)x + m + 1 với m là tham số có đồ thị là đường thẳng (d).
1. Tìm m để (d) đi qua điểm A(1; -1). Vẽ (d) với m vừa tìm được.
2. Với giá trị nào của m thì (d) và đường thẳng (d’) : y = 1 - 3x song song với nhau?
3. Tìm m để khoảng cách từ gốc toạ độ O đến (d) = 1
\(1,y=\left(m-2\right)x+3+1\) \(\left(d\right)\)
\(\left(d\right)\) đi qua \(A\left(1;-1\right)\)
\(\Rightarrow-1=m-2+m+1\)
\(\Rightarrow m=0\)
\(2,y=1-3x\left(d'\right)\)
Để: \(\left(d\right)//\left(d'\right)\)
\(\Leftrightarrow\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\Leftrightarrow\hept{\begin{cases}m-2=-3\\m+1\ne1\end{cases}}\Leftrightarrow\hept{\begin{cases}m=-1\\m\ne0\end{cases}}\)
\(3,\) Gọi \(A\) là giao điểm của \(\left(d\right)\) với \(Ox\)
\(B\) là giao điểm của \(\left(d\right)\) với \(Oy\)
Tọa độ \(A:\hept{\begin{cases}\left(m-2\right)x+m+1=0\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{m+1}{2-m}\\y=0\end{cases}}\)
Tọa độ \(B:\hept{\begin{cases}x=0\\m+1=y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=m+1\end{cases}}\)
Độ dài \(OA:\sqrt{\left(\frac{m+1}{2-m}\right)^2}=|\frac{m+1}{2-m}|\)
Độ dài \(OB:\sqrt{\left(m+1\right)^2}=|m+1|\)
Kẻ \(OH\perp AB\) ta được: \(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\)
\(\Leftrightarrow1=\frac{1}{\left(\frac{m+1}{2-m}\right)^2}+\frac{1}{\left(m+1\right)^2}\)
\(\Leftrightarrow1=\frac{\left(2-m\right)^2}{\left(m+1\right)^2}+\frac{1}{\left(m+1\right)^2}\)
\(\Leftrightarrow\left(m+1\right)^2=m^2-4m+4+1\)
\(\Leftrightarrow m^2+2m+1=m^2-4m+5\)
\(\Leftrightarrow m=\frac{2}{3}\)