Giúp mình với ạ!!!
Trong mp (Oxy), cho điểm A(5; –6) và đường tròn (C): x² + y² – 6x + 8y = 0. Điểm M di động trên (C). Gọi (C’) là tập hợp các trung điểm N của AM. Tâm của (C’) là:
A. (4; –5) B. (6; –7) C. (2; –3) D. (7; –8)
Giúp mình giải Trong mp tọa độ Oxy cho điểm A(0;3) tìm B=Q(0 -45°)
Giúp mình nhanh với .Trong mp tọa độ Oxy cho điểm A (1;0) và đường thẳng (d):x+y-2=0. Tìm ảnh của A và(d) qua phép quay Q(O;90°)
Lời giải:
Nếu bạn có $\overrightarrow{a}(x_1,y_1);\overrightarrow{b}(x_2,y_2)$ thì:
$\overrightarrow{a}.\overrightarrow{b}=x_1x_2+y_1y_2$
Áp dụng vào bài toán:
$\overrightarrow{a}.\overrightarrow{b}=1(-2)+3.1=-2+3=1$
Đường tròn có pt:
\(\left(x-1\right)^2+\left(y-1\right)^2=8\)
Tâm \(I\left(1;1\right)\) và \(R=2\sqrt{2}\)
Gọi \(I_1\) là ảnh của I qua phép quay
\(\Rightarrow\left\{{}\begin{matrix}x_{I1}=1.cos\left(-45^0\right)-1sin\left(-45^0\right)=\sqrt{2}\\y_{I_1}=1.sin\left(-45^0\right)+1.cos\left(-45^0\right)=0\end{matrix}\right.\)
\(\Rightarrow I_1\left(\sqrt{2};0\right)\)
Gọi \(I_2\) là ảnh của \(I_1\) qua phép vị tự:
\(\Rightarrow\left\{{}\begin{matrix}x_{I_2}=-\sqrt{2}.\sqrt{2}=-2\\y_{I_2}=-\sqrt{2}.0=0\end{matrix}\right.\) \(\Rightarrow I_2\left(-2;0\right)\)
\(R_2=\left|-\sqrt{2}\right|.2\sqrt{2}=4\)
Vậy pt đường tròn ảnh có dạng:
\(\left(x+2\right)^2+y^2=16\)
trong mp tọa độ Oxy cho đường thẳng (d):y=mx+5 . Chứng minh đường thẳng (d) luôn đi qua điểm A(0;5)với mọi giá trị của m
Thay \(x=0,y=5\) vào hàm số (d) ta được:
\(5=0.m+5=5\) (luôn đúng)
\(\to\) (d) luôn đi qua A(0;5) với mọi m
Câu 2 a)Vẽ F(2;3) trong mặt phẳng toạ độ Oxy và điểm K(-1,4) b)Cho ∆ABC có C=32° ,B=45° Tính góc A c) ∆ABC là tam giác gì? Giúp mình với ạ😊👉❤️👈
Mọi người ơi giúp mình với ạ, mình cảm ơn rất nhiều
Trong mặt phẳng tọa độ Oxy có cho đường tròn (C): x2+y2+4x-6y-12=0 và điểm A (2;0) (Aϵ(C)). Viết phương trình đường thẳng đi qua A cắt đường tròn (C) tại điểm thứ hai B sao cho AB = 5\(\sqrt{2}\)
\(\left(C\right):x^2+y^2+4x-6y-12=0\)
\(\Leftrightarrow\left(C\right):\left(x+2\right)^2+\left(y-3\right)^2=25\)
\(\Rightarrow I=\left(-2;3\right)\) là tâm đường tròn, bán kính \(R=5\)
Kẻ IH vuông góc với AB.
\(\Rightarrow IH=\sqrt{R^2-AH^2}=\sqrt{5^2-\dfrac{1}{4}.50}=\dfrac{5\sqrt{2}}{2}\)
Đường thẳng AB có dạng: \(ax+by-2a=0\left(a^2+b^2\ne0\right)\)
Ta có: \(d\left(I;AB\right)=\dfrac{\left|-2a+3b-2a\right|}{\sqrt{a^2+b^2}}=\dfrac{5\sqrt{2}}{2}\)
\(\Leftrightarrow7a^2-48ab-7b^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=7b\\b=-7a\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}AB:7x+y-14=0\\AB:x-7y-2=0\end{matrix}\right.\)
Ta có: \(M\left( {0;y} \right)\)
Lại có: \(\overrightarrow {MA} \left( {1;1 - y} \right),\overrightarrow {MB} \left( {2; - 2 - y} \right)\)
Theo yêu cầu bài toán, suy ra: \({1^2} + {\left( {1 - y} \right)^2} = {2^2} + {\left( {2 + y} \right)^2} \Leftrightarrow 1 + 1 - 2y + {y^2} = 4 + 4 + 4y + {y^2} \Leftrightarrow y = - 1\)
Nên \(M\left( {0; - 1} \right)\)
Vậy \(a = 0,b = - 1 \Rightarrow a + b = 0 + \left( { - 1} \right) = - 1\)
Trong mp Oxy cho tam giác ABC với:
A(1;4), B(-2;2), C(5;-2)
Tìm tọa độ điểm K thuộc trục hoành sao cho K cách đều A và C