Cho các số a, b, c đôi một khác nhau thỏa mãn: a+b+c=1; \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Tính B= \(a^2+b^2+c^2\)
Cho các số thực a, b, c đôi một khác nhau thỏa mãn a^2-b=b^2-c=c^2-a Chứng minh rằng (a+b+1)(b+c+1)(c+a+1)= -1
Từ \(a^2-b=b^2-c\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=b-c\)
\(\Leftrightarrow a+b=\frac{b-c}{a-b}\)
\(\Rightarrow a+b+1=\frac{b-c}{a-b}+1=\frac{a-c}{a-b}\)
Tương tự ta có:
\(\hept{\begin{cases}b+c+1=\frac{b-a}{b-c}\\c+a+1=\frac{c-b}{c-a}\end{cases}}\)
\(\Rightarrow\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)=\frac{a-c}{a-b}.\frac{b-a}{b-c}.\frac{c-b}{c-a}=-1\)
tìm các số nguyên dương a,b,c đôi một khác nhau thỏa mãn 1/a + 1/b + 1/c = 1
Cho ba số a,b,c đôi một khác nhau và khác 0 thỏa mãn : 1/c + 1/a-b = 1/a - 1/b-c. CMR: b = a+c
cho các số thực a,b,c khác nhau từng đôi một và thỏa mãn điều kiện: a^2-b=b^2-c=c^2-a. CMR: (a+b+1)(b+c+1)(c+a+1)=-1
Ta có: \(a^2-b=b^2-c\Leftrightarrow a^2-b^2=b-c\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=b-c\Rightarrow a+b=\frac{b-c}{a-b}\)
Tương tự CM được: \(b+c=\frac{c-a}{b-c}\) và \(c+a=\frac{a-b}{c-a}\)
Khi đó:
\(\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)\)
\(=\left(\frac{a-b}{c-a}+1\right)\left(\frac{c-a}{b-c}+1\right)\left(\frac{b-c}{a-b}+1\right)\)
\(=\frac{c-b}{c-a}\cdot\frac{b-a}{b-c}\cdot\frac{a-c}{a-b}=-1\)
cho các số thực a,b,c khác nhau từng đôi một và thỏa mãn điều kiện: a^2-b=b^2-c=c^2-a. CMR: (a+b+1)(b+c+1)(c+a+1)=-1
Vì a2 - b = b2 - c = c2 - a
Ta có a2 - b = b2 - c
=> (a - b)(a + b) = b - c
=> a + b + 1 = \(\frac{a-c}{a-b}\)
Tương tự ta có : b + c + 1 = \(\frac{b-a}{b-c}\)
a + c + 1 =\(\frac{b-c}{a-c}\)
Khi đó (a + b + 1)(b + c + 1)(a + c + 1) = \(\frac{a-c}{a-b}.\frac{b-a}{b-c}.\frac{b-c}{a-c}=-1\)(đpcm)
cho các số thực a,b,c khác nhau từng đôi một và thỏa mãn điều kiện: a^2-b=b^2-c=c^2-a. CMR: (a+b+1)(b+c+1)(c+a+1)=-1
Ta có:\(a^2-b=b^2-c\)
\(\Leftrightarrow a^2-b^2=b-c\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=b-c\)
\(\Leftrightarrow a+b=\frac{b-c}{a-b}\)
\(\Leftrightarrow a+b+1=\frac{b-c}{a-b}+1\)
\(\Leftrightarrow a+b+1=\frac{a-c}{a-b}\)
Cmtt ta có:
\(\hept{\begin{cases}b^2-c=c^2-a\Leftrightarrow b+c+1=\frac{b-a}{b-c}\\c^2-a=a^2-b\Leftrightarrow c+a+1=\frac{c-b}{c-a}\end{cases}}\)
\(\Rightarrow\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)=\frac{a-c}{a-b}.\frac{b-c}{b-a}.\frac{c-b}{c-a}=-1\)
Cre:mạng
x là số thực và a,b,c là các số thực đôi một khác nhau và khác 0 thỏa mãn \(x=a+\dfrac{1}{b}=b+\dfrac{1}{c}=c+\dfrac{1}{a}\)Tính xabc
cho các số tự nhiên a,b,c,d đôi một khác nhau và khác 0 thỏa mãn a^2+d^2=b^2+c^=P. chứng minh rằng P là hợp số
Cho các số nguyên dương a,b,c,d đôi một khác nhau thỏa mãn a/(a+b)+b/(b+c)+c/(c+d)+d/(d+a) là một số nguyên.Chứng minh tích abcd là số chính phương.
ms hok lóp 7 thông cảm nhá sory zery much
Cho các số a, b, c khác 0 và đôi một khác nhau thỏa mãn: a(z-y) = b(z+x) = c(x-y). Chứng minh rằng (y+z)/a(c-b) = (z-x)/b(c-a) = (x+y)/c(a-b).