Cho ba số dương x,y,z thỏa mãn:
\(\frac{x}{y}=\frac{2}{3}\) ;\(\frac{x}{3}=\frac{z}{5}\)và \(x^2+y^2+z^2=\frac{217}{4}\)
Giá trị biểu thức x+2y-2z=........
cho x,y,z là ba số thực dương thỏa mãn x+y+z=2018
Chứng minh \(\frac{x^3}{\left(y+z\right)^2}+\frac{y^3}{\left(x+z\right)^2}+\frac{z^3}{\left(x+y\right)^2}>=\frac{1009}{2}\)
Tham khảo:Simple inequality
\(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}>=2\)Cho ba số x, y, z là ba số dương thỏa mãn \(x^3+y^3+z^3=1\)
CMR:
mình cũng định hỏi câu này sorry mình cx chẳng bt
Cho ba số dương x, y, z thỏa mãn:
\(\frac{x}{y}=\frac{2}{3};\frac{x}{3}=\frac{z}{5}\) và \(x^2+y^2+z^2=\frac{217}{4}\)
Giá trị biểu thức:x + 2y - 2z = ?
\(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2.3}=\frac{y}{3.3}\Rightarrow\frac{x}{6}=\frac{y}{9}\left(1\right)\)
\(\frac{x}{3}=\frac{z}{5}\Rightarrow\frac{x}{2.3}=\frac{z}{5.2}\Rightarrow\frac{x}{6}=\frac{z}{10}\left(2\right)\)
Từ 1 và 2
\(\Rightarrow\frac{x}{6}=\frac{y}{9}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{9}=\frac{z}{10}=k\)
=> x = 6k
y = 9k
z = 10k
Thay vào đẳng thức 3(đề cho) , ta có :
x2 + y2 + z2 = \(\frac{217}{4}\)
=> (6k)2 + (9k)2 + (10k)2 = \(\frac{217}{4}\)
=> 36k2 + 81k2 + 100k2 = \(\frac{217}{4}\)
=> k2(36 + 81 + 100) = \(\frac{217}{4}\)
=> k2 = \(\frac{217}{4}:217=\frac{217}{4}.\frac{1}{217}=\frac{1}{4}=0,25\)
Mà x , y , z dương
=> k chỉ có thể nhận giá trị dương vì 6 ; 9 ; 10 > 0
=> k = 0,25
=> x = 6. 0,25 = 1,5
y = 9. 0,25 = 2,25
z = 10. 0,25 = 2,5
=> x + 2y - 2z = 1,5 + 2. 2,25 - 2. 2,5
= 1,5 + 4,5 - 5
= 1
Ta có:\(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{6}=\frac{y}{9}\left(1\right)\)
\(\frac{x}{3}=\frac{z}{5}\Rightarrow\frac{x}{6}=\frac{z}{10}\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\frac{x}{6}=\frac{y}{9}=\frac{z}{10}\Rightarrow\frac{x^2}{36}=\frac{y^2}{81}=\frac{z^2}{100}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{36}=\frac{y^2}{81}=\frac{z^2}{100}=\frac{x^2+y^2+z^2}{36+81+100}=\frac{1}{4}\)
\(\Rightarrow x^2=\frac{1}{4}\cdot36=9\Rightarrow x=3\)(vì x là số dương)
\(\Rightarrow y^2=81\cdot\frac{1}{4}=20,25\Rightarrow y=4,5\text{(vì y là số dương)}\)
\(\Rightarrow z^2=\frac{1}{4}\cdot100=25\Rightarrow z=5\text{(vì z là số dương)}\)
\(\Rightarrow x+2y-2z=3+4,5\cdot2-5\cdot2=12-10=2\)
cho x,y,z là các số thực dương thỏa mãn x,y,z>0 thỏa mãn x(x-z)+y(y-z) =0 tìm GTNN của \(P=\frac{x^3}{x^2+z^2}+\frac{y^3}{y^2+z^2}+\frac{x^2+y^2+4}{x+y}\)
\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)
\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)
\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)
\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)
Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)
Cho x , y , z là ba số thực dương thỏa mãn x2 + y2 + z2 = 2 . CMR :
\(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{z^2+x^2}\le\frac{x^3+y^3+z^3}{2xyz}+3\).
ta có: \(VT=\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{z^2+x^2}=3+\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{x^2+z^2}\)
Áp dụng bất đẳng thức cauchy: \(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2xz\end{cases}}\)
do đó \(VT\le3+\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}=\frac{x^3+y^3+z^3}{2xyz}+3=VF\)
đẳng thức xảy ra khi x=y=z
cho ba số thực dương x,y,z thỏa mãn x+y+z=3
CMR: \(\frac{x}{x+\sqrt{3x+yz}}+\frac{y}{y+\sqrt{3y+zx}}+\frac{z}{z+\sqrt{3z+xy}}\)
Áp dụng bđt phụ \(\sqrt{ \left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\)có
\(VT=\frac{x}{x+\sqrt{\left(x+y\right)\left(z+x\right)}}+\frac{y}{y+\sqrt{\left(y+x\right)\left(z+y\right)}}+\frac{z}{z+\sqrt{\left(z+x\right)\left(y+z\right)}}\)
\(\le\frac{x}{x+\sqrt{xz}+\sqrt{xy}}+\frac{y}{y+\sqrt{yz}+\sqrt{yx}}+\frac{z}{z+\sqrt{zx}+\sqrt{zy}}\)
\(=\frac{x}{\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}+\frac{y}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}+\frac{z}{\sqrt{z}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}\)
\(=\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)
hh
cục đó \(\le1\)
Cho x,y,z là ba số thực dương thỏa mãn x+y+z = 2018
Chứng minh \(\frac{x^3}{\left(y+z\right)^2}+\frac{y^3}{\left(x+z\right)^2}+\frac{z^3}{\left(x+y\right)^2}\ge\frac{1009}{2}\)
Mong các bạn giải theo THCS nhé. Cảm ơn!
Ta có \(\frac{x^3}{\left(y+z\right)^2}=\frac{x^3}{\left(2018-x\right)^2}\)
Xét \(\frac{x^3}{\left(2018-x\right)^2}\ge x-\frac{1009}{2}\)
<=> \(x^3\ge\left(2018^2-2.2018.x+x^2\right)\left(x-\frac{1009}{2}\right)\)
<=> \(x^3\ge x^3-x^2\left(\frac{1009}{2}+2018.2\right)+x\left(2018.1009+2018^2\right)-\frac{2018^2.1009}{2}\)
<=> \(\frac{9081}{2}x^2-6.1009^2.x+2018.1009^2\ge0\)
<=> \(\frac{9081}{2}\left(x^2-\frac{2.2018}{3}.x+\left(\frac{2018}{3}\right)^2\right)\ge0\)
<=> \(\frac{9081}{2}\left(x-\frac{2018}{3}\right)^2\ge0\)( luôn đúng)
=> \(\frac{x^3}{\left(y+z\right)^2}\ge x-\frac{1009}{2}\)
Khi đó \(VT\ge x-\frac{1009}{2}+y-\frac{1009}{2}+z-\frac{1009}{2}=2018-\frac{3}{2}.1009=\frac{1009}{2}\)(ĐPCM)
Dấu bằng xảy ra khi \(x=y=z=\frac{2018}{3}\)
Ta có : \(\frac{x^3}{\left(y+z\right)^2}=\frac{x^3}{\left(2018-x\right)^2}\)
xét \(\frac{x^3}{\left(2018-x\right)^2}\ge x-\frac{1009}{2}\)
<=> \(x^3\ge\left(x^2-2.2018.x+2018^2\right)\left(x-\frac{1009}{2}\right)\)
<=> \(x^3\ge x^3-x^2\left(\frac{1009}{2}+2.2018\right)+x\left(2018^2+1009.2018\right)-\frac{2018^2.1009}{2}\ge0\)
<=> \(\frac{9081}{2}x^2-6.1009^2.x+2018.1009^2\ge0\)
<=> \(\frac{9081}{2}.\left(x-\frac{2018}{3}\right)^2\ge0\)( luôn đúng)
=> \(\frac{x^3}{\left(y+z\right)^2}\ge x-\frac{1009}{2}\)
Khi đó \(P\ge x+y+z-\frac{3.1009}{2}=\frac{1009}{2}\)(ĐPCM)
Dấu bằng xảy ra khi \(x=y=z=\frac{2018}{3}\)
Cho a,b,c là 3 số dương cho trước còn x,y,z là ba số dương thay đổi, luôn luôn thỏa mãn ĐK : \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=1\)
Đề bài mik chép thiếu : Hãy tìm GTLN của S = x + y + z
Cho ba số dương x,y,z thỏa mãn x+y+z=1. Chứng minh rằng:
\(\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}\)\(>14\)
\(\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+zx\right)}+\frac{2}{x^2+y^2+z^2}\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}\)
=2/xy+yz+zx+(1/xy+yz+zx+2/x2+y2+z2)>=6/(x+y+z)2+8/(x+y+z)2=6+8=14 :ap dung xy+yz+zx=<(x+y+z)2/3 va :1/a+1/b>=4/a+b dau=xay ra<=>x=y=z=1/3
Theo A - G, ta có:
\(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=\frac{1}{3}\)
Ta có:
\(N=\frac{2}{xy+yz+zx}+\frac{2}{2\left(xy+yz+zx\right)}+\frac{2}{x^2+y^2+z^2}\ge\frac{2}{\frac{1}{3}}+\frac{8}{\left(x+y+z\right)}\ge14\)
=> ĐPCM
Dấu "=" xảy ra khi x = y = z = 1/3
Cho x,y,z là ba số dương thỏa mãn xy+yz+zx=3.C/m:
\(\frac{1}{1+x^2\left(y+z\right)}+\frac{1}{1+y^2\left(x+z\right)}+\frac{1}{1+z^2\left(x+y\right)}\le\frac{1}{xyz}\)