CMR
(2011^2 +11^2)/(2011^2+200^2) = (2011+11)/(2011+2000)
Cmr
(2011^2+11^2)/(2011^2+2000^2) = (2011+11)/(2011+2000)
CMR
(2011^2+11^2)/(2011^2+2000^2) = (2011+11)/(2011+2000)
CMR: \(\frac{2011^3+11^3}{2011^3+2000^3}=\frac{2011+11}{2011+2000}\)
Đặt 2011 = a ; 11 = b ; 2000 = c
\(\Rightarrow a=b+c\)
Xét vế phải của đẳng thức ta có: \(\frac{2011^3+11^3}{2011^3+2000^3}=\frac{a^3+b^3}{a^3+c^3}=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)}\)
Thay \(a=b+c\)vào \(a^2-ab+b^2=\left(b+c\right)^2-\left(b+c\right).b+b^2=b^2+bc+c^2\)
Thay \(a=b+c\)vào \(a^2-ac+c^2=\left(b+c\right)^2-\left(b+c\right).c+c^2=b^2+bc+c^2\)
\(\Rightarrow\)\(a^2-ab+b^2=a^2-ac+c^2\)
\(\Rightarrow\) \(\frac{2011^3+11^3}{2011^3+2000^3}=\frac{a^3+b^3}{a^3+c^3}=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)}=\frac{a+b}{a+c}=\frac{2011+11}{2011+2000}\)
Vậy \(\frac{2011^3+11^3}{2011^3+2000^3}=\frac{2011+11}{2011+2000}\left(đpcm\right)\)
cm
2011^3+11^3/2011^3+2000^3=2011+11/2011+2000
a) 2011 + 5[300 – (17 – 7)2]
b) 695 – [200 + (11 – 1)2]
c) 129 – 5[29 – (6 – 1)2]
2010 – 2000 : [486 – 2(72 – 6)]
a: \(=2011+5\cdot\left[300-10^2\right]\)
\(=2011+5\cdot200\)
=1011
b: \(=695-\left[200+10^2\right]\)
=695-300
=395
a) =2011+5.200
=3011
b)=695-300
=395
c)1=29-5.4
=109
d)=2010-2000:400
=2010-5
=2005
Chứng minh rằng : \(\frac{2011^3+11^3}{2011^3+2000^3}=\frac{2011+11}{2011+2010}\)
1 / CMR: \(\dfrac{2011^3+11^3}{2011^3+2000^3}=\dfrac{2011+11}{2011+2000}\)
2 / Cho \(A=\dfrac{x^4+x}{x^2-x+1}-\dfrac{x^4-x}{x^2+x+1}\left(x\in R\right)\)
3 / Xét \(A=\left(\dfrac{a+1}{ab+1}+\dfrac{ab+a}{ab-1}-1\right):\left(\dfrac{a+1}{ab+1}-\dfrac{ab+a}{ab-1}+1\right)\)
a/ rút gọn A
b/ tìn GTNN mà A đạt được biết a + b = 4
Bài 2:
\(A=\dfrac{x\left(x^3+1\right)}{x^2-x+1}-\dfrac{x\left(x^3-1\right)}{x^2+x+1}\)
\(=x\left(x+1\right)-x\left(x-1\right)\)
=x^2+x-x^2+x
=2x
cho 2011 số tự nhiên x1;x2;...;x2011 thỏa mãn đk:
\(\frac{1}{x_1^{11}}+\frac{1}{x_2^{11}}+...+\frac{1}{x_{2011}^{11}}=\frac{2011}{2048}\) tính:
M=\(\frac{1}{x_1^1}+\frac{1}{x_2^2}+...+\frac{1}{x_{2011}^{2011}}\)
2012*2011+2012*11+2000
2013*2011-2011*2012