Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
koyokohoho
Xem chi tiết
Thanh Tùng DZ
3 tháng 5 2020 lúc 15:51

gọi a là 1 giá trị của biểu thức P, khi đó ta có a = 2xy + 3yz + 4xz

Thay z = 1 - x - y, ta được :

a = 2xy + 3y ( 1 - x - y ) + 4x ( 1 - x - y )

\(\Leftrightarrow4x^2+\left(5y-4\right)x+3y^2-3y+a=0\)

PT có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow\left(5y-4\right)^2-4.4\left(3y^2-3y+a\right)\ge0\)

\(\Leftrightarrow-23y^2+8y+16\ge16a\)

Vì \(-23y^2+8y+16=-23\left(y-\frac{4}{23}\right)^2+\frac{384}{23}\le\frac{384}{23}\)

\(\Rightarrow16a\le\frac{384}{23}\Rightarrow a\le\frac{24}{23}\Rightarrow P\le\frac{24}{23}\)

Vậy GTLN của P là \(\frac{24}{23}\)

Khách vãng lai đã xóa
Thanh Tùng DZ
3 tháng 5 2020 lúc 15:52

quên còn dấu "="

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+z=1\\y=\frac{4}{23}\\x=\frac{4-5y}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{9}{23}\\y=\frac{4}{23}\\z=\frac{10}{23}\end{cases}}}\)

Khách vãng lai đã xóa
dia fic
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 1 2021 lúc 21:57

\(2=4\sqrt{xy}+2\sqrt{xz}\le2x+2y+x+z=3x+2y+z\)

Ta có:

\(VT=\dfrac{3yz}{x}+\dfrac{4zx}{y}+\dfrac{5xy}{z}=2\left(\dfrac{xy}{z}+\dfrac{zx}{y}+\dfrac{yz}{x}\right)+\left(\dfrac{yz}{x}+\dfrac{xy}{z}\right)+2\left(\dfrac{zx}{y}+\dfrac{xy}{z}\right)\)

\(VT\ge2\left(x+y+z\right)+2y+4x\)

\(VT\ge2\left(3x+2y+z\right)\ge4\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)

Thu Nguyễn
Xem chi tiết
tth_new
12 tháng 12 2018 lúc 18:01

\(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\).Áp dụng BĐT Cauchy-Schwarz,ta có:

\(=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)

\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)

Dấu "=" xảy ra khi x = y = z = 1/3

Vậy A min = 3/4 khi x=y=z=1/3

tth_new
12 tháng 12 2018 lúc 18:01

Bỏ chữ "Áp dụng bđt Cauchy-Schwarz,ta có:"giùm mình,nãy đánh nhầm ở bài làm trước mà quên xóa đi!

tth_new
12 tháng 12 2018 lúc 18:04

À mà để phải là tìm Max mới đúng chứ nhỉ?

Do đó,bạn sửa dòng: \(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\) đến hết thành:

"\(\le3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)

Dấu "=" xảy ra khi x=y=z=1/3

Vậy A max = 3/4 khi x=y=z=1/3

Thu Nguyễn
Xem chi tiết
FFPUBGAOVCFLOL
Xem chi tiết
Quỳnh Chi
28 tháng 2 2020 lúc 16:02

Trl :

 https://olm.vn/hoi-dap/detail/104563324252.html

Bạn tham khảo !

Khách vãng lai đã xóa
Huỳnh Quang Sang
28 tháng 2 2020 lúc 20:06

Ta có :  \(2xy=3yz=4zx\) => \(\frac{xy}{\frac{1}{2}}=\frac{yz}{\frac{1}{3}}=\frac{zx}{\frac{1}{4}}\)

Đặt \(\frac{xy}{\frac{1}{2}}=\frac{yz}{\frac{1}{3}}=\frac{zx}{\frac{1}{4}}=k\)

=> \(\hept{\begin{cases}xy=\frac{k}{2}\\yz=\frac{k}{3}\\zx=\frac{k}{4}\end{cases}}\)

=> \(xy\cdot yz\cdot xz=\frac{k}{2}\cdot\frac{k}{3}\cdot\frac{k}{4}\)

=> \(\left(xyz\right)^2=\frac{k^3}{24}\)

=> \(3^2=\frac{k^3}{24}\)

=> \(k^3=24\cdot9\)

=> \(k^3=216\)

=> \(k=6\)

+) \(xy=\frac{k}{2}=\frac{6}{2}=3\)\(yz=\frac{k}{3}=\frac{6}{3}=2\)\(zx=\frac{k}{4}=\frac{6}{4}=\frac{3}{2}\)

Nếu xyz = 3 cùng với xy = 3 thì z = 1,cùng với yz = 2 thì x = \(\frac{3}{2}\),cùng với zx = \(\frac{3}{2}\)thì y = 2

Vậy \(\left(x,y,z\right)=\left(\frac{3}{2},2,1\right)\)

Khách vãng lai đã xóa
Nguyễn Khánh Huyền
Xem chi tiết
huỳnh kim kiều
19 tháng 4 2018 lúc 23:32

2xy=3yz => x=3/2z

2xy=4zx=> y=2z

xyz=3

thế vào ta có:3/2z.2z.z=3=> z = 1

x = 3/2

y= 2

anh Nguyen
19 tháng 4 2018 lúc 23:10

x,y,z=0

Nguyễn Khánh Huyền
19 tháng 4 2018 lúc 23:11

Làm rõ ra bn nhé!

Hoài Thu Vũ
Xem chi tiết
Võ Việt Hoàng
23 tháng 7 2023 lúc 22:00

a) \(\left\{{}\begin{matrix}a=x\\b=2y\\c=3z\end{matrix}\right.\Rightarrow a+b+c=2;a,b,c>0\)

\(\Rightarrow S=\sqrt{\dfrac{\dfrac{ab}{2}}{\dfrac{ab}{2}+c}}+\sqrt{\dfrac{\dfrac{bc}{2}}{\dfrac{bc}{2}+a}}+\sqrt{\dfrac{ca}{ca+2b}}\)

\(=\sqrt{\dfrac{ab}{ab+2c}}+\sqrt{\dfrac{bc}{bc+2a}}+\sqrt{\dfrac{ca}{ca+2b}}\)

Vì a,b,c>0 nên áp dụng BĐT AM-GM, ta có: 

 \(\sqrt{\dfrac{ab}{ab+2c}}=\sqrt{\dfrac{ab}{ab+\left(a+b+c\right)c}}=\sqrt{\dfrac{ab}{c^2+bc+ca+ab}}=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\)

\(=\sqrt{\dfrac{a}{a+c}}.\sqrt{\dfrac{b}{b+c}}\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\) 

\(\sqrt{\dfrac{bc}{bc+2a}}=\sqrt{\dfrac{bc}{\left(b+a\right)\left(c+a\right)}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{c}{a+c}\right)\)

\(\sqrt{\dfrac{ca}{ca+2b}}=\sqrt{\dfrac{ca}{\left(c+b\right)\left(a+b\right)}}\le\dfrac{1}{2}\left(\dfrac{c}{b+c}+\dfrac{a}{a+b}\right)\)

\(\Rightarrow S\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)+\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{c}{b+c}\right)+\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{c}{a+c}\right)=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi và chỉ khi: a=b=c=2/3=>\(\left(x,y,z\right)=\left\{\dfrac{2}{3};\dfrac{1}{3};\dfrac{2}{9}\right\}\)

Phương Minh
Xem chi tiết
3013 thaodoanmit
Xem chi tiết