B=3n^2+3n+5/n+1.Hãy tìm số nguyên n để B là số nguyên
Tìm số nguyên n sao cho:
a) (n+1)/(n-2) là số nguyên âm.
b) (n+7)/(3n-1) là số nguyên.
c) (3n+2)/(4n-5) là số tự nhiên.
Đề bài : Tìm n thuộc Z để
a) 3n - 1 / n +7 là số nguyên
b) 3n + 2 / 4n - 5 là số nguyên
3. tìm số nguyên n sao cho
a) n+3/ n -2 là số nguyên
b) n+7/ 3n -1 là số nguyên
c)3n+2/ 4n-5 là số nguyên
a)Để n+3/n-2 thuộc Z
=>n+3 chia hết n-2
=>n-2+5 chia hết n-2
=>5 chia hết n-2
=>n-2 thuộc Ư(5)={1;-1;5;-5}
=>n thuộc {3;1;7;-3}
a)Để \(\frac{\text{n+3}}{\text{n-2}}\) \(\in\) Z
=> n+3 chia hết n-2
=> (n-2) +5 chia hết n-2
=>5 chia hết n-2
=>n-2 thuộc Ư(5)={1;-1;5;-5}
Ta có:
n -2 | 1 | -1 | -5 | 5 |
n | 3 | 1 | -3 | 7 |
a,tìm số nguyên n để a=3n+2/n có giá trị là 1 số nguyên
b,cho a,b thuộc n*.Hãy so sánh a+n/b+n và a/b
a, Có\(\frac{3n+2}{n}=3+\frac{2}{n}\)
Vì \(3\inℤ\)=> Để \(a\inℤ\)thì \(\frac{2}{n}\inℤ\)<=> \(n\in U\left(2\right)=\left\{\pm1;\pm2\right\}\)
b, Có
\(\frac{a+n}{b+n}=1-\frac{b-a}{b+n}\)
\(\frac{a}{b}=1-\frac{b-a}{b}\)
Vì\(b+n\ge b\)=> \(\frac{b-a}{b+n}\le\frac{b-a}{b}\)=> \(1-\frac{b-a}{b+n}\ge1-\frac{b-a}{b}\)=> \(\frac{a+n}{b+n}\ge\frac{a}{b}\)
Tìm số nguyên n để
A. n-6/ n-1 là 1 số nguyên
b.3n+ 24/ n- 4 là 1 số nguyên
c. n^2 + 5 / n+1 là 1 số nguyên
a) để n-6 /n-1 nguyên thì n-6 chia hết cho n-1
ta có n-6=(n-1)-5
vì n-1 chia hết cho n-1 nên 5 cũng phải chia hết cho n-1
hay n-1 là ước của 5
Ư(5)= -5;-1;1;5
nếu n-1 =-1 thì n= -1+1=0
nếu n-1 =-5 thì n=-5+1=-4
nếu n-1 = 1 thì n=1+1=2
nếu n-1= 5 thì n=5+1 =6
Tìm số nguyên n sao cho:
a) n + 3/n - 2 là số nguyên âm
b) n + 7/3n - 1 là số nguyên
c) 3n + 2/4n - 5 là số tự nhiên
a)Ta có:\(\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=\frac{n-2}{n-2}+\frac{5}{n-2}=1+\frac{5}{n-2}\)
=> Để \(1+\frac{5}{n-2}\) là số nguyên âm
=>\(\frac{5}{n-2}\) là số âm và \(\frac{5}{n-2}>-1\)
\(\Rightarrow n-2=-5\)
\(\Rightarrow n=-5-2\)
\(\Rightarrow n=-3\)
Tìm số nguyên dương n để bthức B = 3n^2 +7n-10 / 3n+1. là số nguyên
a)Tìm số nguyên n sao cho (9n+5) chia hết cho (6n+1)
b)Tìm các số nguyên n để n-2 là ước của 3n+5
Tìm só nguyên n để các phân số sau là một số nguyên
a) \(\dfrac{10}{1+2n}\)
b) \(\dfrac{3n}{3n+5}\)
c) \(\dfrac{4n+10}{2n-3}\)
Làm rõ chi tiết chút nha mọi người help em 1 mạng đi
a: Để A nguyên thì \(2n+1\inƯ\left(10\right)\)
mà n nguyên
nên \(2n+1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{0;-1;2;-3\right\}\)
b: B nguyên thì 3n+5-5 chia hết cho 3n+5
=>\(3n+5\inƯ\left(-5\right)\)
mà n nguyên
nên \(3n+5\in\left\{-1;5\right\}\)
=>n=-2 hoặc n=0
c: Để C nguyên thì 4n-6+16 chia hết cho 2n-3
=>\(2n-3\in\left\{1;-1\right\}\)
=>\(n\in\left\{2;1\right\}\)