Cho A = 2/3 + 8/9 + 26/27 + ...+ 3^n - 1/ 3^n. Chứng minh A> n - 1/2
cho A = 2/3 + 8/9 + 26/27 +...+ 3^n - 1 / 3^n. chứng minh a > n - 1/2
Cho A=2/3+8/9+26/27+...+3^n -1/3^n. Chứng minh A>n-1/2
cho A=\(\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+...+\frac{3^n-1}{3^n}\)
=> n-A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^n}\)
=>\(3\left(n-A\right)\)=\(1\)\(+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{3n-1}}\)
=> \(3\left(n-A\right)-\left(n-A\right)=2\left(n-A\right)=1-\frac{1}{3^n}\)
=>\(2\left(n-A\right)< 1\)
=>\(n-A< \frac{1}{2}\)
=> \(A< n-\frac{1}{2}\)
Deu la tui het do
Sao lại là n-A thế bạn? n đã tìm đc đâu
cho A=2/3+8/9+26/27+......+3^n -1/3^n. chứng minh A>n-1/2
dễ mà các bn
A=2/3+8/9+26/27+...+3n+1/3n , chứng minh A>n-1/2
F=4/3+7/32+10/33+...+3n+1/3n,chứng minh E<3/4
so sánh L=(1-1/4).(1-1/9).(1-1/16)....(1-1/20) với 1/21
Cho \(A=\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+...+\frac{3^n-1}{3^n}.\)
Chứng minh : \(A>n-\frac{1}{2}\)
\(choA=\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+...+\frac{3^n-1}{3^n}\)
Chứng minh rằng \(A< n-\frac{1}{2}\)
A =\(\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+.....+\frac{3^n-1}{3^n}\). Chứng minh rằng A > n - \(\frac{1}{2}\)
Cho C = 2/3 + 8/9 + 26/27 + ... + 3^n-1/3^n
Chứng ming rằng : C > n - 1/2
\(C=\frac{3-1}{3}+\frac{3^2-1}{3^2}+...+\frac{3^n-1}{3^n}\)
\(=1-\frac{1}{3}+1-\frac{1}{3^2}+...+1-\frac{1}{3^n}\)
\(=1+1+...+1-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^n}\right)\)
\(=n-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^n}\right)=n-D\)
\(D=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^n}\)
\(3D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-1}}\)
\(\Rightarrow2D=1-\frac{1}{3^n}\Rightarrow D=\frac{1}{2}-\frac{1}{2.3^n}\)
\(\Rightarrow C=n-\left(\frac{1}{2}-\frac{1}{2.3^n}\right)=n-\frac{1}{2}+\frac{1}{2.3^n}>n-\frac{1}{2}\)
bài 1:A= 1/2+1/3+1/4+...+1/308+1/309
B= 309/1+308/2+307/3+...+1/309
tính A/B
bài 2: G=5/3+8/32+11/32+...+302/3100
bài 3: cho A= 2/3+8/9+26/27+...+3n-1/3n
chứng minh A>n-1/2