Cho A =1+3+5+.......+2n-1 với n thuộc N* . Hỏi số A có là số chính phương ko? Vì sao
cho M=1+3+5+...+(2n-1) (với n thuộc N,n khác 0)
Hỏi M có là số chính phương ko?
Số số hạng của M là : [(2n-1)-1]: 2+1=n^2
Tổng M là:(2n-1+1).n:2=n^2
=>M là số chính phương
:3
Trong tổng trên có số số hạng là :
(2n-1-1) : 2 + 1 = n ( số hạng )
=> M = (2n-1+1).n/2 = 2n.n/2 = n^2
=> M là số chính phương
Tk mk nha
Cho C=2+4+6+...+2n (n thuộc N*).Hỏi C có phải là số chính phương ko?( số chính phương là số bằng bình phương của 1 số tự nhiên.VD:4 là số chính phương vì nó bằng 22.
C=2+4+6+...+2n
=(2n+2)+[(2n-2)+4]+[(2n-4)+6]+...+[(n+2)+n]
=2(n+1)n/2
=(n+1)n
vậy C không phải là số chính phương
a) Cho A= 1+3+5+7+...+ ( 2n +1) Với n thuộc N
chứng tỏ rằng A là số chính phương.
b) Cho B= 2+4+6+8+...+2n Với n thuộc N
số B có thể là số chính phương không ?
a) A có số số hạng là: (2n+1-1) :2 +1 = n+1 (số)
=> \(A=\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)
\(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)
=> A là số chính phương
b) B có số số hạng là : (2n-2):2+1= n (số)
=> \(B=\frac{\left(2n+2\right).n}{2}=\frac{2\left(n+1\right).n}{2}=\left(n+1\right).n\)
=> B không là số chính phương.
A có số số hạng là:
(2n+1-1):2+1=n+1(số)
=>\(\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)
\(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)
=>A là số chính phương
Cho A=1+3+5+..+2n-1.Hỏi A có phải là số chính phương hay không?Vì sao?
ta chứng minh \(A=n^2\)
thật vậy
với n=1 , thì \(A=1=1^2\) đúng
ta giả sử đẳng thức đúng tới k ,tức là :
\(1+3+5+..+2k-1=k^2\)
Xét \(1+3+5+..+2k-1+2k+1=k^2+2k+1=\left(k+1\right)^2\)
vậy đẳng thức đúng với k+1
theo nguyên lí quy nạp ta có điều phải chứng minh hay A là số chính phương
mọi người giúp mk vs nha,mk đang cần gắp lắm ạ
1.chứng minh rằng với mọi n thuộc N số A=9n^2+27n+7 không thể là lập phương đúng
2.tìm n thuộc N sao cho 9+2^n là số chính phương
3.tìm n thuộc N sao cho 3^n+19 là số chính phương
4.tìm n thuộc Z sao cho n^4+2n^3+2n^2+n+7 là số chính phương
Cho số A = \(n^6-n^4+2n^3+2n^2\)
với n thuộc N >1 hỏi số A có là số chính phương
A=n6-n4+2n3+2n2
=n4(n2-1)+2n2(n+1)
=n2(n+1)(n3-n2+2)
=n2(n+1)[(n+1)(n2-2n+2)]
=n2(n+1)2(n2-2n+2)
=n2(n+1)2[(n-1)2+1]
Ta có:(n-1)2<(n-1)2+1=n2+2(1-n)<n2 (vì n>1)
=>(n-1)2+1 ko là SCP
=>A ko là SCP
a)
Tìm n thuộc Z sao cho: n+2/3n-1 có GTLN.Tìm GT đó
b)
Cho M=a^2+b^2 với a,b thuộc N;a,b lẻ.Hỏi M có là số chính phương ko?Vì sao?
chứng minh rằng :
a) S = 1 + 3 +5 +7 + ... + 2n - 1 với n thuộc N* là số chính phương .
b) S = 2 +4 +6 + ... + 2n với n thuộc N* không phải là số chính phương
M có là số chính phương ko nếu :
M = 1+3+5+......+ (2n+1) ( với n thuộc N, n khác 0)
M= 1+3+5+...+(2n-1)
=[(2n-1)+1]×n]/2
=2n^2/2=n^2
=> M là số chính phương.