Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cù Thúy Hiền
Xem chi tiết
Yim Yim
3 tháng 4 2017 lúc 21:50

\(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}=4\)

\(\Leftrightarrow x^2-2\cdot x\cdot\frac{1}{x}+\frac{1}{x^2}+y^2-2\cdot y\cdot\frac{1}{y}+\frac{1}{y^2}=0\)

\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{x}=0\\y-\frac{1}{y}=0\end{cases}\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}x=-1\\x=1\end{cases}}\\\orbr{\begin{cases}y=-1\\y=1\end{cases}}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{x}=0\\y-\frac{1}{y}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}x=-1\\x=1\end{cases}}\\\orbr{\begin{cases}y=1\\y=-1\end{cases}}\end{cases}}\)\(x-\frac{1}{x}=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

\(y-\frac{1}{y}=0\Leftrightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)

HuyKabuto
Xem chi tiết
Trần Thị Loan
21 tháng 6 2015 lúc 20:49

=> \(\left(x^2-2+\frac{1}{x^2}\right)+\left(y^2-2+\frac{1}{y^2}\right)=0\)

=> \(\left(x^2-2x.\frac{1}{x}+\frac{1}{x^2}\right)+\left(y^2-2.y.\frac{1}{y}+\frac{1}{y^2}\right)=0\)

=> \(\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)

<=> \(x-\frac{1}{x}=0;y-\frac{1}{y}=0\)

=> \(x^2=1;y^2=1\)

=> x = 1 hoặc -1

y = 1 hoặc -1

Nguyễn Hữu Huy
Xem chi tiết
Trương Thái Hậu
Xem chi tiết
phanthaonon
11 tháng 8 2016 lúc 13:47

1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)

\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)

=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

=>\(x=3\cdot20=60\)

    \(y=3\cdot24=72\)

    \(z=3\cdot21=63\)

phanthaonon
11 tháng 8 2016 lúc 14:16

3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)

=> \(x=1\cdot15=15\)

     \(y=1\cdot7=7\)

     \(z=1\cdot3=3\)

     \(t=1\cdot1=1\)

Kệ Chúng m T Lợi
2 tháng 9 2018 lúc 14:34

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

nguyentienquang
Xem chi tiết
Nguyễn Xuân Yến Nhi
Xem chi tiết
Nguyễn Huy Tú
29 tháng 9 2016 lúc 13:41

Đăng từng bài thôi chứ bạn

Họ Phạm
29 tháng 9 2016 lúc 15:57

mk lm nha

 

Nguyễn Thị Quỳnh Anh
18 tháng 1 2017 lúc 20:28

1.

a)Ta có: 3.x=y.7

3x chia hết cho 7 mà 3 và 7 là số nguyên tố cùng nhau

suy ra: x chia hết cho 2 hay x=2k (k thuộc tập hợp số nguyên)

7y chia hết cho 3 mà 7 và 3 là số nguyên tố cùng nhau

suy ra: y chia hết cho 3 hay y=7k (k thuộc tập hợp số nguyên)

(y khác 0 nên k khác 0)

vậy: x=2.k

y=5.k

(k thuộc tập hợp Z và k khác 0)

Nguyễn Công Minh Hoàng
Xem chi tiết
Trang
Xem chi tiết
Hoàng Nguyễn Khánh Linh
4 tháng 10 2016 lúc 16:10

Bài 1:

 \(\frac{x}{2}\) = \(\frac{y}{3}\) , \(\frac{y}{4}\) = \(\frac{z}{5}\)  và x + y - z = 10

\(\frac{x}{2}\) = \(\frac{y}{3}\) --> \(\frac{x}{2.4}\) = \(\frac{y}{3.4}\) => \(\frac{x}{8}\) = \(\frac{y}{12}\) 

\(\frac{y}{4}\) = \(\frac{z}{5}\) --> \(\frac{y}{4.3}\) = \(\frac{z}{5.3}\) => \(\frac{y}{12}\) = \(\frac{z}{15}\) 

=> \(\frac{x}{8}=\frac{y}{12}\)  = \(\frac{z}{15}\)             

- Áp dụng tính chất dãy tỉ số bằng nhau ta có:

 \(\frac{x}{8}\) = \(\frac{y}{12}\) = \(\frac{z}{15}\) --> \(\frac{x+y-z}{8+12-15}_{ }\) = \(\frac{10}{5}\) = 2

=> \(\frac{x}{8}\) = 2 --> x = 16

      \(\frac{y}{12}=2\) --> y = 24

      \(\frac{z}{15}=2\) --> z = 30

Vậy x = 16 ; y = 24 ; z = 30

Bài 2: 

               \(\frac{x}{2}=\frac{y}{5}\) và x . y = 10

  Đặt \(\frac{x}{2}=\frac{y}{5}=k\) 

Ta có: x = 2 . k ; y = 5 . k

          x . y = 10 => 2k . 5k = 10

                          => 10 . \(^{k^2}\) = 10

                          => \(^{k^2}\) = 1 --> k = -1 hoặc k = 1

          k = 1 ta có \(\frac{x}{2}=\frac{y}{5}=1\) --> x = 2 ; y = 5

          k = -1 ta có \(\frac{x}{2}=\frac{y}{5}=-1\) --> x = -2 ; y = -5

 

                                                              

Trần Việt Linh
4 tháng 10 2016 lúc 15:45

Bài 1:

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\)\(\frac{y}{12}=\frac{z}{15}\)

=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

=>\(\begin{cases}x=16\\y=24\\z=30\end{cases}\)

Bài 2:

Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k;y=5k\)

Có: xy=10

\(\Leftrightarrow2k\cdot5k=10\)

\(\Leftrightarrow k^2=1\Leftrightarrow\left[\begin{array}{nghiempt}k=1\\k=-1\end{array}\right.\)

Với k=1 thì x=2 ; y=5

Với k=-1 thì x=-2 ; y=-5

 

Nguyen Thi Mai
4 tháng 10 2016 lúc 15:48

Bài 1 :

Ta có:

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

 

Nên x = 2.8 = 16

      y = 2.12 = 24

      z= 2. 15 = 30

Vậy ...

Bài 2 :

Đặt k =  . Ta có x = 2k, y = 5k

Từ xy=10. suy ra 2k.5k = 10 => 10 k^{2} = 10 => k^{2} = 1 => k = ± 1

Với k = 1 ta được  = 1 suy ra x = 2, y = 5

Với k = - 1 ta được  = -1  suy ra x = -2, y = -5

Đào Thị Thảo
Xem chi tiết
Trà My
4 tháng 7 2017 lúc 12:36

Bài 1: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)

=>\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

=>x=27;z=36;z=60

Bài 2: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\Rightarrow xy=2k.5k=10k^2=40\Rightarrow k^2=4\Rightarrow\hept{\begin{cases}k=-2\\k=2\end{cases}}\)

+)k=-2 => x=-4;y=-5

+)k=2 => x=4;y=5

Vậy x=-4;y=-5 hoặc x=4;y=5

Nguyễn Văn Tuấn
Xem chi tiết
Hiếu Thông Minh
5 tháng 7 2018 lúc 14:49

(x-\(\frac{1}{2}\) )(y+\(\frac{1}{3}\) )(z-2)=0 và x+2=y+3=z+4

<=> x-\(\frac{1}{2}\)=0 hoặc y+\(\frac{1}{3}\)=0 hoặc z-2=0

+,với z-2=0

=>z=2

=>x+2=y+3=2+4

=>x+2=y+3=6

=. x=4;y=3

+,x-\(\frac{1}{2}\)=0

=>x=\(\frac{1}{2}\)

=>\(\frac{1}{2}\)+2=y+3=z+4

=>\(\frac{5}{2}\)=y+3=z+4

=>y=\(\frac{-1}{2}\);z=\(\frac{-3}{2}\)

+,với y+\(\frac{1}{3}\)=0

=>y=\(\frac{-1}{3}\)

=>x+2=\(\frac{-1}{3}\)+3=z+4

=>x+2=\(\frac{8}{3}\)=z+4

=>x=\(\frac{2}{3}\);z=\(\frac{4}{3}\)

Vậy khi x-\(\frac{1}{2}\)=0 thì x=\(\frac{1}{2}\);y=\(\frac{-1}{2}\);z=\(\frac{-3}{2}\)

       khi y+\(\frac{1}{3}\)=0 thì x=\(\frac{2}{3}\);y=\(\frac{-1}{3}\);z=\(\frac{4}{3}\)

       khi z-2=0 thì x=4;y=3;z=2

Nguyễn Văn Tuấn
5 tháng 7 2018 lúc 14:54

Hiếu Thông Minh ơi giúp mình câu hỏi mình vừa đăng nữa nhé cảm ơn bạn mình sẽ k nhiều cho bạn !!!!!!!!