Cho tam giác ABC với bô 3 đoạn thẳng CEVA : AD,BE,CF đồng quy tại P cmr:
\(\frac{PD}{AD}+\frac{PE}{BE}+\frac{PF}{CF}=1\)
Cho tam giác ABC có 3 đường trung tuyến là AD, BE, CF giao nhau tại G. Trên BE và CF lần lượt lấy các điểm M và N sao cho \(BM=\frac{1}{3}BE;CN=\frac{1}{3}CF\)
CMR : 3 đường thẳng AD;BN;CM đồng quy
#) Mn giúp hộ bài này vs ạ :3
Cần gấp lắm ->.<
Theo bài ra:
G là trọng tâm tam giác ABC
Có \(BG=\frac{2}{3}BE\) mà \(BM=\frac{1}{3}BE\)=> \(BG=2.BM\)=> M là trung điểm BG
Có: \(CG=\frac{2}{3}CF\)mà \(CN=\frac{1}{3}CF\)=> \(CG=2.CN\)=> N là trung điểm CG
Xét tam giác GBC có: GD, BN, CM là 3 đường trung tuyến
=> GD, BN, CM đồng quy
mà A thuộc đường thẳng GD
=> AD; BN; CM đồng quy.
cho P là một điểm nằm trong tam giác ABC, AP cắt CB tại D, BP cắt AC tại E và CP cắt AB tại F. CMR: PD/AD + PE/BE + PF/CF=1
Cho tam giác ABC có AD, BE,CF là các đường cao đồng quy tại H.Chứng minh rằng:
\(\frac{AH}{AD}+\frac{BH}{BE}+\frac{CH}{CF}=2\)
\(\Delta ABH\) và \(\Delta ABD\) có chung đường cao kẻ từ \(B\rightarrow AD\) nên \(\frac{AH}{AD}=\frac{S_{ABH}}{S_{ABD}}\) (1)
\(\Delta AHC\) và \(\Delta ADC\) có chung đường cao kẻ từ \(C\rightarrow AD\) nên \(\frac{AH}{AD}=\frac{S_{AHC}}{S_{ADC}}\) (2)
Từ (1) và (2) suy ra
\(\frac{AH}{AD}=\frac{S_{ABH}}{S_{ABD}}=\frac{S_{AHC}}{S_{ADC}}=\frac{S_{ABH}+S_{AHC}}{S_{ABD}+S_{ADC}}=\frac{S_{ABH}+S_{ACH}}{S_{ABC}}\)
( Áp dụng tính chất của dãy tỉ số bằng nhau )
CMTT \(\frac{BH}{BE}=\frac{S_{ABH}+S_{BCH}}{S_{ABC}}\)
\(\frac{CH}{CF}=\frac{S_{ACH}+S_{BCH}}{S_{ABC}}\)
Cộng vế với vế của các bất đẳng thức trên ta được :
\(\frac{AH}{AD}+\frac{BH}{BE}+\frac{CH}{CF}=\frac{2\left(S_{ABH}+S_{ACH}+S_{BCH}\right)}{S_{ABC}}=\frac{2S_{ABC}}{S_{ABC}}=2\left(đpcm\right)\)
Chúc bạn học tốt !!!
Cho tam giác ABC, AD, BE, CF là các đường phân giác trong, đồng quy tại I. Xác định dạng của tam giác ABC để
\(\frac{AI}{AD}.\frac{BI}{BE}.\frac{CI}{CF}\) đạt giá trị lớn nhất\(\frac{ }{ }\)
Cho tam giác ABC , các đường cao AD, BE, CF cắt nhau tại H.
a) CMR: \(\frac{HD}{DA}+\frac{HE}{BE}+\frac{HF}{CF}=1\)
B) CMR: \(\Delta AEF\)đồng dạng với \(\Delta ABC\)
c) CM : H là giao điểm của 3 đường phân giác trong của tam giác ABC
cho tam giác ABC ba trung tuyến AD,BE,CF cắt nhau tại G. Trên tia BE,Cf lần lượt lấy M và N sao cho BM=\(\frac{1}{3}\)BE; CN=\(\frac{1}{3}\)CF. chứng minh rằng AD,BN,CM đồng quy
Giúp mình !!!!!!!!
1. Tam giác ABC với D,E,F lần lượt thuộc cạnh BC,CA,AB sao cho AD,BE,CF đồng quy tại M. chứng minh \(\frac{DM}{AD}+\frac{FM}{CF}+\frac{EM}{BE}=1\)
2. Tam giác ABC với M tùy ý nằm trong tam giác. Đường thẳng đi qua M và trọng tâm G của tam giác cắt BC,CA,AB lần lượt tại A',B',C'. chứng minh: \(\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}=3\)
3. Tam giác nhọn ABC, phân giác AD. M,N lần lượt là hình chiếu của D trên AC,AB, P là giao điểm BM, CN. chứng minh AP vuông góc BC
Cho tam giác ABC nội tiếp (O), các đường cao AD,BE,CF cắt (O) tại M,N,K.
CMR: \(\frac{AM}{AD}+\frac{BN}{BE}+\frac{CK}{CF}=4\)
cho tam giác ABC, 3 trung tuyến AD, BE, CF đồng quy tại điểm G. Trên BE, CF lần lượt lấy các điểm M,N sao cho BM=1/3 BE, CN=1/3 CF. Chứng minh rằng 3 đường thẳng AD, BN, CM đồng quy
Xét ΔABC có
AD,BE,CF là trung tuyến
AD,BE,CF cắt nhau tai G
=>G là trọng tâm
=>BG=2/3BE=2BM và CG=2/3CF=2CN
=>M,N lần lượt là trung điểm của GB,GC
=>GD,CM,BN đồng quy
=>AD,CM,BN đồng quy