Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
jinkaka132
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 4 2022 lúc 19:31

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

Suy ra: DA=DH

b: Xét ΔADE vuông tại A và ΔHDC vuông tại H có

DA=DH

\(\widehat{ADE}=\widehat{HDC}\)

Do đó: ΔADE=ΔHDC

Suy ra: DE=DC
hay ΔDEC cân tại D

Phan Quốc Việt
Xem chi tiết
yến
29 tháng 4 2016 lúc 19:50

5 )

tự vẽ hình nha bạn 

a)

Xét tam giác ABM và tam giác ACM  có :

AM  cạnh chung 

AB = AC (gt)

BM = CM  (gt)

suy ra : tam giác ABM = tam giác ACM ( c-c-c)

suy ra : góc BAM =  góc CAM  ( 2 góc tương ứng )

Hay AM  là tia phân giác của góc A

b)

Xét tam giác ABD  và tam giác ACD có :

AD cạnh chung 

góc BAM  = góc CAM ( c/m câu a)

AB = AC (gt)

suy ra tam giác ABD  = tam giác ACD ( c-g-c)

suy ra : BD = CD ( 2 cạnh tương ứng)  

C) hay tam giác BDC cân tại D

Phan Quốc Việt
Xem chi tiết
Xuân Trà
30 tháng 4 2016 lúc 18:34

Bài 4: a) Xét ABE vàHBE có:
BE chung
ABE= EBH (vì BE là phân giác)
=> ABE=HBE (cạnh huyền- góc nhọn)
b, Vì ABE=HBE(cmt)
=> BA = BH và EA = EH 
=> điểm B, E cách đều 2 mút của đoạn thẳng AH 
=>BE là đường trung trực của đoạn thẳng AH
c, Vì AC vuông góc BK => EAK = \(90\) độ
EH vuông góc BC => EHC = 90 độ
Xét AEK vàHEC có:
EAK = EHC (= 90độ)(cmt)
AE = EH (cmt)
AEK = HEC (đối đỉnh)
=> AEK HEC (g.c.g)
=> EK = EC (2 cạnh tương ứng)
Xét HEC vuông tại H (vì EHC = 90 độ )
có EH < EC(cạnh huyền lớn hơn cạnh góc vuông)
Mà AE = EH (cmt) => AE < EC
 

Phan Quốc Việt
Xem chi tiết
OoO Love Forever And Onl...
30 tháng 4 2016 lúc 19:05

Bạn tự vẽ hình nha!!!

3a.

Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

ABD = EBD (BD là tia phân giác của ABE)

BD là cạnh chung

=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)

=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE

=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE

=> BD là đường trung trực của AE.

3b.

Xét tam giác AFD và tam giác ECD có:

FAD = CED ( = 90 )

AD = ED (tam giác ABD = tam giác EBD)

ADF = EDC (2 góc đối đỉnh)

=> Tam giác ADF = Tam giác EDC (g.c.g)

=> DF = DC (2 cạnh tương ứng)

3c.

Tam giác ADF vuông tại A có:

AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)

mà FD = CD (theo câu b)

=> AD < CD.

Vương Nguyên
30 tháng 4 2016 lúc 19:41

3a.

Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

ABD = EBD (BD là tia phân giác của ABE)

BD là cạnh chung

=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)

=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE

=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE

=> BD là đường trung trực của AE.

3b.

Xét tam giác AFD và tam giác ECD có:

FAD = CED ( = 90 )

AD = ED (tam giác ABD = tam giác EBD)

ADF = EDC (2 góc đối đỉnh)

=> Tam giác ADF = Tam giác EDC (g.c.g)

=> DF = DC (2 cạnh tương ứng)

3c.

Tam giác ADF vuông tại A có:

AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)

mà FD = CD (theo câu b)

=> AD < CD.

Nhung Nguyễn
30 tháng 4 2016 lúc 19:58

3. a.

xét tg ABD & EBD:

ABD=EBD(fan giác BD)

BAD=BED(=90độ)

BD(cạnh chung)

suy ra tg ABD=EBD(ch-gn)

sra: BA= BE(cctuong ung)

sra: B thuộc trung trực AE(1)

sra: AD=De(cctuong ung)

sra: D thuộc trung trực AE(2)

từ (1) và(2) sra: BD là trung trực AE

b. xét tg ADFvàEDF

AD=DE(cmt)

ADF=EDC(đối đỉnh)

DAF=DEC(90 độ)

sra: tg ADF=EDF(gcg)

sra:DF=DC(cct ứng)

c.tg EDC: ED<DC(cgv<ch)

mà ED=AD

sra: AD<DC

4.

a.xét tg ABE & HBE:

ABE=EBH(fan giác BD)

BAE=BHE(=90độ)

BE(cạnh chung)

suy ra tg ABE=HBE(ch-gn)

b.      sra: BA= BE(cctuong ung)

sra: B thuộc trung trực AH(1)

sra: AE=He(cctuong ung)

sra:E thuộc trung trực AE(2)

từ (1) và(2) sra: BE là trung trực AH

c. xét tg AEKvàHEC

AE=HE(cmt)

ADF=EDC(đối đỉnh)

AEK=HEC(90 độ)

sra: tg AEK=HEC(gcg)

sra:DF=DC(cct ứng)

tg HEC: EH<EC(cgv<ch)

mà EA=EH

sra:EA<EC

5.

a. 

Tg ABC cân: AM là trung tuyến

sra: Am là phân giác góc BAC(tính chất tam giác cân)

b. 

xét tg ABD và ACD:

AB=AC(tg ABC cân)

BAD=CAD(fan giác Am)

AD (cạnh chung)

sra: tg ABD= ACD( cgc)

c. ta có: BD=CD(cctuong ứng)

sra: tg BCD cân tại D

6.

a.

vì D thuộc tia phân giác góc ABC

sra: DA=DH( D cách đều 2 cạnh của góc)

b.

tg HDC: HD<DC(cgv<ch)

mà DA=DH(cmt)

sra DA< DC

c. 

Tg BKC: D là trực tâm

sra: BD vuông góc KC

mà BD là phân giác góc KBC

sra: tg BKC cân 

Nguyễn Bảo Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 11:05

a) Xét ΔABD vuông tại A và ΔHBD vuông tại H có 

BD chung

\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔABD=ΔHBD(Cạnh huyền-góc nhọn)

b) Ta có: ΔBAD=ΔBHD(cmt)

nên BA=BH(hai cạnh tương ứng) và DA=DH(Hai cạnh tương ứng)

Ta có: BA=BH(cmt)

nên B nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DA=DH(cmt)

nên D nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BD là đường trung trực của AH(đpcm)

c) Xét ΔADE vuông tại A và ΔHDC vuông tại H có 

DA=DH(cmt)

\(\widehat{ADE}=\widehat{HDC}\)(hai góc đối đỉnh)

Do đó: ΔADE=ΔHDC(Cạnh góc vuông-góc nhọn kề)

Suy ra: AE=HC(Hai cạnh tương ứng)

Ta có: BA+AE=BE(A nằm giữa B và E)

BH+HC=BC(H nằm giữa B và C)

mà BA=BH(cmt)

và AE=HC(cmt)

nên BE=BC(đpcm)

Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 11:06

d) Ta có: ΔADE=ΔHDC(cmt)

nên DE=DC(Hai cạnh tương ứng)

Ta có: BE=BC(cmt)

nên B nằm trên đường trung trực của EC(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: DE=DC(cmt)

nên D nằm trên đường trung trực của EC(Tính chất đường trung trực của một đoạn thẳng)(4)

Từ (3) và (4) suy ra BD là đường trung trực của EC

hay BD\(\perp\)EC(đpcm)

e) Ta có: DA=DH(cmt)

mà DH<DC(ΔDHC vuông tại H)

nên DA<DC(đpcm)

Nguyễn Thanh Bình
9 tháng 7 2021 lúc 11:12

a) Xét tam giác BAD và tam giác BHD có: 

BD chung (gt)

ABD= HBD (gt)

A = H =90o (gt)

=> BAD= BHD(c.h-g.n) 

 

 

 

Trần Thảo Vy
Xem chi tiết
Nguyễn Linh Chi
22 tháng 11 2019 lúc 23:31

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

Khách vãng lai đã xóa
Trần Thị Anh Thư
Xem chi tiết
Đỗ Thị Dung
4 tháng 3 2019 lúc 12:04

Bài 1  a, xét tam giác ABD và tam giác HBD có:

                   BD cạnh chung

                    \(\widehat{ABD}\)=\(\widehat{HBD}\)(gt)

 \(\Rightarrow\)tam giác ABD = tam giác HBD( CH-GN)

\(\Rightarrow\)AB=HB

b,trên tia đối của tia DH lấy O sao cho HD=DO

     xét tam giác ADO và tam giác CDH có:

                    DH=DO( theo trên)

                    \(\widehat{ADO}\)=\(\widehat{CDH}\)( Vì đối đỉnh)

\(\Rightarrow\)tam giác ADO=tam giác CDH( CH-GN)\(\Rightarrow\)AD=CD

Thiên Bảo Đặng Hoàng
Xem chi tiết
Kiều Vũ Linh
2 tháng 5 2023 lúc 12:47

loading...    

a) Xét hai tam giác vuông: ∆ABD và ∆HBD có:

BD chung

∠ABD = ∠HBD (BD là phân giác của ∠ABH)

⇒ ∆ABD = ∆HBD (cạnh huyền - góc nhọn)

b) Do ∆ABD = ∆HBD (cmt)

⇒ AB = BH (hai cạnh tương ứng)

⇒ B nằm trên đường trung trực của AH (1)

Do ∆ABD = ∆HBD (cmt)

⇒ AD = HD (hai cạnh tương ứng)

⇒ D nằm trên đường trung trực của AH (2)

Từ (1) và (2) ⇒ BD là đường trung trực của AH

c) Xét ∆ADK và ∆HDC có:

AD = HD (cmt)

∠ADK = ∠HDC (đối đỉnh)

DK = DC (gt)

⇒ ∆ADK = ∆HDC (c-g-c)

⇒ ∠DAK = ∠DHC (hai góc tương ứng)

⇒ ∠DAK = 90⁰

Mà ∠DAB = 90⁰

⇒ ∠DAK + ∠DAB = 180⁰

⇒ B, A, K thẳng hàng

Ly Trần
Xem chi tiết
Đợi anh khô nước mắt
18 tháng 5 2016 lúc 9:11

A B C D H K

Đợi anh khô nước mắt
18 tháng 5 2016 lúc 9:25

Xét tam giác ABD và tam giác HBD có:

BD: chung.

Góc BAD=BHD=90 độ.

Góc ABD=HBD(Phân giác BD)

=> Tam giác ABD=tam giác HBD(ch-gn)

b/ Gọi giao điểm của BD và AH là O.

Xét tam giác AOB và tam giác HOB có:

BO:chung.

Góc ABO=HBO(Phân giác BD)

BA-BH(cạnh tương ứng của tam giác BAD=BHD)

=>Tam giác AOB=tam giác HOB(c-g-c)

=> Góc AOB=HOB(góc tương ứng)=90 độ

Góc BAH=BKC(góc ứng với cạnh đáy của tam giác cân có cùng góc B)

=> AH//KC

Mà BD vuông góc với AH nên BD cũng vuông góc với KC.

c/Xét tam giác ADK và tam giác HDC có:

DA=DH(cạnh tương ứng của tam giác BAD=tam giác BHD)

Góc DAK=DHC=90 độ.

Góc ADK=HDC(đối đỉnh)

=> tam giác ADK=tam giác HDC(g-c-g)

=> DK=DC(cạnh tương ứng)

Mà trong tam giác vuông HDC có:

DC là cạnh huyền nên DC>DH

=> DK>DH(đpcm)

Cô Hoàng Huyền
18 tháng 5 2016 lúc 9:31

Cô trinh bày câu b theo cách ngắn gọn hơn:

Xét tam giác BKC có KH vuông góc BC, CA vuông góc BK nên D là trực tâm của tam giác. Từ đó suy ra BD là đường cao hay BD vuông góc với EC.

Chúc các em học tốt :)