Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thu Huyền
Xem chi tiết
Tiến Dũng Trương
18 tháng 1 2017 lúc 22:00

pt 1) x=y=z  Cosi 3 số 

Thanh Tâm
Xem chi tiết
Nguyễn Minh Sang
Xem chi tiết
T.Ps
31 tháng 8 2019 lúc 19:52

#)Giải :

\(ĐK:x,y,z\ne0\)

\(\hept{\begin{cases}x+y+z=9\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\\xy+yz+xz=27\end{cases}\Leftrightarrow\hept{\begin{cases}x+y+z=9\\xy+yz+xz=xyz\\xy+yz+xz=27\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y+z=9\\xyz=27\\xy+yz+xz=27\end{cases}}}\)

Coi x,y,z lần lượt là 3 nghiệm x1,x2,x3 của một pt bậc 3

Theo công thức Vi-ét, ta có : \(\hept{\begin{cases}x_1+x_2+x_3=9\\x_1x_2x_3=27\\x_1x_2+x_2x_3+x_1x_3=27\end{cases}\Leftrightarrow x_1,x_2,x_3}\) là ba nghiệm của pt

\(X^3-9X^2+27X-27=0\Leftrightarrow X=3\)

Vậy x = y = z = 3

\(\hept{\begin{cases}x+y+z=9\left(1\right)\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\left(2\right)\\xy+yz+xz=27\left(3\right)\end{cases}}\)

Từ (2) \(\Rightarrow\frac{xy+yz+xz}{xyz}=1\Rightarrow xyz=27\)

Ta có \(\left(x-3\right)\left(y-3\right)\left(z-3\right)=xyz+9\left(x+y+z\right)-3\left(xy+yz+xz\right)-27\)

\(=27+9.9-3.27-27=0\)

\(\Rightarrow x=3\)hoặc\(y=3\) hoặc \(z=3\)

Xét x=3\(\Rightarrow\hept{\begin{cases}y+z=6\\yz=9\end{cases}\Rightarrow}y=z=3\)

Tương tự với các TH còn lại

Vậy x=y=z=3

Nguyễn Ngọc Tho
Xem chi tiết
Tuấn
Xem chi tiết
alibaba nguyễn
4 tháng 10 2017 lúc 16:45

\(\hept{\begin{cases}x+y+z=3\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\\xy+yz+zx=27\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y+z=3\\xyz=xy+yz+zx=27\\xy+yz+zx=27\end{cases}}\)

Từ đây ta thấy rằng x, y, z là nghiệm của phương trình: 

\(X^3-3X^2+27X-27=0\)

Vì phương trình bậc 3 này chỉ có 1 nghiệm duy nhất (\(\Rightarrow x=y=z\)) và dễ thấy nghiệm đó không thỏa hệ ban đầu.

Vậy hệ vô nghiệm

Hà Thắng
4 tháng 10 2017 lúc 20:41

khó quá không làm được đề gì mà .khó thế

phamtheduong
8 tháng 10 2017 lúc 10:29

bai nay de ma

ap dung tinh chat day ti so bang nhau ta co

1+1+1 phan x+y+z =3 phan x + y + z

ma the de bai tong tren = 1 nen x + y +z =3 .vay x,y,z +1

thu thủy nguyễn thị
Xem chi tiết
zZz Cool Kid_new zZz
16 tháng 7 2020 lúc 0:48

Sai đề nhá, đáng lẽ \(0\le x,y,z\le1\)

Ta dễ có:
\(1+y+zx\le x^2+xy+xz\Rightarrow\frac{x}{1+y+zx}\ge\frac{x}{x^2+xy+xz}=\frac{1}{x+y+z}\)

Tương tự:

\(\frac{y}{1+z+xy}\ge\frac{1}{x+y+z};\frac{z}{1+z+yz}\ge\frac{1}{x+y+z}\)

\(\Rightarrow\frac{x}{1+y+zx}+\frac{y}{1+z+xy}+\frac{z}{1+z+yz}\ge\frac{3}{x+y+z}\)

Đẳng thức xảy ra tại x=y=z=1

Khách vãng lai đã xóa
KCLH Kedokatoji
Xem chi tiết
tth_new
20 tháng 10 2020 lúc 15:54

1111111111111111111

\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)

Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)

Là xong.

Khách vãng lai đã xóa
Nguyễn Anh Minh
Xem chi tiết
Nguyễn Thiều Công Thành
17 tháng 7 2017 lúc 21:05

sai đề

Tuấn Bảo Hoàng
Xem chi tiết
Đặng Hữu Hiếu
25 tháng 5 2018 lúc 12:24

(x+y+z)²=x²+y²+z²+2(xy+yz+zx)

→ x²+y²+z²=(1/2)²-2.(-2)=17/4

(x+y+z)³=x³+y³+z³+3(x+y)(y+z)(z+x)

=x³+y³+z³+3(x+y+z)(xy+yz+zx)-3xyz

→ x³+y³+z³=(1/2)³+3.(-1/2)-3.1/2.(-2)=13/8

(xy+yz+zx)²=x²y²+y²z²+z²x²+2xyz(x+y+z)

→ x²y²+y²z²+z²x²=(-2)²-2.1/2.(-1/2)=9/2

(x²+y²+z²)(x³+y³+z³)=x^5+y^5+z^5+(x²y²+y²z²+z²x²)(x+y+z)-xyz(xy+yz+zx)

→ x^5+y^5+z^5=17/4.13/8+(-2).(-1/2)-9/2.1/2=181/32