Tìm \(x+y+z\), biết
\(-3x=4y\)
\(6y=7z\)
\(x-2y+3z=-48\)
Cho -3x = 4y; 6y = 7z; x – 2y + 3z = -48. Tìm x, y, z
Bài này ở violympic toán mà
Đề là như thế này mới đúng
Cho -3x=4y;6y=7z;x-2y+3z=-48.Khi đó x+y+z=-33
Violympic vòng 10 mà mk được 300 điểm k mk nha
\(-3x=4y\Rightarrow\frac{x}{4}=\frac{y}{-3}\)\(\Rightarrow\frac{x}{-28}=\frac{y}{21}\)
\(6y=7z\Rightarrow\frac{y}{7}=\frac{z}{6}\)\(\Rightarrow\frac{y}{21}=\frac{z}{18}\)
=> \(\frac{x}{-28}=\frac{y}{21}=\frac{z}{18}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{-28}=\frac{y}{21}=\frac{z}{18}=\frac{x-2y+3z}{-28-42+54}=\frac{-48}{-16}=3\)
\(\Rightarrow x=-84;y=63;z=54\)
Cho –3x = 4y; 6y = 7z; x – 2y + 3z = -48. Khi đó x + y + z = ?
-3x=4y suy ra x/4=y/-3 suy ra x/-28=y/21
6y=7z suy ra y/7=z/6 suy ra y/21=z/18
làm và điều kì diễu sẽ xảy ra
nhớ kich cho mình
hoán đỏi các trung tỉ và ngoại tỉ đi là làm đc
-3x = 4y ; 6y = 7z và x - 2y + 3z = 48
Tính x ,y , z
-3x = 4y; 6y = 7z và x - 2y + 3z = -48
=> x=-84
y=63
z=54
nha bạn chúc bạn học tốt nha
-3x = 4y ; 6y = 7z và x - 2y + 3z = 48
=> x = -84
y = 63
z = 54
-HT-
-3x = 4y ; 6y = 7z và x - 2y + 3y = -48 => x=-84y = 63z =54
cho\(-3x=4y;6y=7z;x-2y+3z=-48\)
Tính x+y+z
\(\left(-3\right)x=4y\)
\(\Rightarrow\frac{x}{4}=\frac{y}{-3}\Rightarrow\frac{x}{4.7}=\frac{y}{\left(-3\right).7}\Rightarrow\frac{x}{28}=\frac{y}{-21}\left(1\right)\)
\(6y=7z\)
\(\Rightarrow\frac{y}{7}=\frac{z}{6}\Rightarrow\frac{y}{7.\left(-3\right)}=\frac{z}{\left(-3\right).6}\Rightarrow\frac{y}{-21}=\frac{z}{-18}\left(2\right)\)
Từ 1 và 2
\(\Rightarrow\frac{x}{28}=\frac{y}{-21}=\frac{z}{-18}\)
\(\Rightarrow\frac{x}{28}=\frac{2y}{-42}=\frac{3z}{-54}\)
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\frac{x}{28}=\frac{2y}{-42}=\frac{3z}{-54}=\frac{x-2y+3z}{28-\left(-42\right)+\left(-54\right)}=-3\)
=> x = -84
y = 63
z = 162
=> x + y + z = 141
Áp dụng tính chất dãy tỉ số bawnhf nhau là ra mà bạn
cho\(-3x=4y ; 6y=7z ; x-2y+3z=-48\)
Tính x+y+z
Giải:
Ta có: \(-3x=4y\Rightarrow\frac{x}{4}=\frac{y}{-3}\Rightarrow\frac{x}{28}=\frac{y}{-21}\)
\(6y=7z\Rightarrow\frac{y}{7}=\frac{z}{6}\Rightarrow\frac{y}{-21}=\frac{z}{-18}\)
\(\Rightarrow\frac{x}{28}=\frac{y}{-21}=\frac{z}{-18}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{28}=\frac{y}{-21}=\frac{z}{-18}=\frac{2y}{-42}=\frac{3z}{-54}=\frac{x-2y+3z}{28+42-54}=\frac{-48}{16}=-3\)
+) \(\frac{x}{28}=-3\Rightarrow x=-84\)
+) \(\frac{y}{-21}=-3\Rightarrow y=63\)
+) \(\frac{z}{-18}=-3\Rightarrow z=54\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(-84;63;54\right)\)
a) 2x=3y;5y=7z và x-y-z=-27
b)x/4=y/5=z/6 mà x^2-2y^2+z^2=18
c) x:y:z=3:8:5 và 3x+y-2z=14
d) 2x=3y;5y-7z và 3x+5y-7z=30
e)x-3/-4=y+4/7=z-5/3 và 3x-2y+7z=-48
f)-3x=4y;6y=7z và x-2y+3z=-48
g) x/-3=y/7;y/-2 =z/5 và -2x-4y +5z=146
Tìm x,y,z
a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)và\(x-y-z=-27\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)
Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)
\(\frac{y}{14}=9\Rightarrow y=9.14=126\)
\(\frac{z}{10}=9\Rightarrow z=9.10=90\)
Vậy:\(x=189;y=126\)và\(z=90\)
b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)và\(x^2-2y^2+z^2=18\)
\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)và\(x^2-2y^2+z^2=18\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)
Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)
\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)
Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)
c) \(x:y:z=3:8:5\)và\(3x+y-2z=14\)
\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)và\(3x+y-2z=14\)
\(\Rightarrow\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}\)và \(3x+y-2z=14\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\)
Ta có: \(\frac{3x}{9}=2\Rightarrow3x=18\Rightarrow x=6\)
\(\frac{y}{8}=2\Rightarrow y=16\)
\(\frac{2z}{10}=2\Rightarrow2z=20\Rightarrow z=10\)
Vậy:\(x=6;y=16;z=10\)
Tìm x,y,z biết:
a) \(\frac{x}{-3}=\frac{y}{7};\frac{y}{-2}=\frac{z}{5}\) và -2x-4y+5z=146
b) -3x=4y; 6y=7z và x-2y+3z=-48
a) Ta có:
\(\frac{x}{-3}=\frac{y}{7}\Rightarrow\frac{x}{6}=\frac{y}{-14}.\)
\(\frac{y}{-2}=\frac{z}{5}\Rightarrow\frac{y}{-14}=\frac{z}{35}.\)
=> \(\frac{x}{6}=\frac{y}{-14}=\frac{z}{35}.\)
=> \(\frac{-2x}{-12}=\frac{4y}{-56}=\frac{5z}{175}\) và \(-2x-4y+5z=146.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{-2x}{-12}=\frac{4y}{-56}=\frac{5z}{175}=\frac{-2x-4y+5z}{\left(-12\right)-\left(-56\right)+175}=\frac{146}{219}=\frac{2}{3}.\)
\(\left\{{}\begin{matrix}\frac{x}{6}=\frac{2}{3}\Rightarrow x=\frac{2}{3}.6=4\\\frac{y}{-14}=\frac{2}{3}\Rightarrow y=\frac{2}{3}.\left(-14\right)=-\frac{28}{3}\\\frac{z}{35}=\frac{2}{3}\Rightarrow z=\frac{2}{3}.35=\frac{70}{3}\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(4;-\frac{28}{3};\frac{70}{3}\right).\)
Chúc bạn học tốt!
a) Có: \(\frac{x}{-3}=\frac{y}{7};\frac{y}{-2}=\frac{z}{5}\Rightarrow\frac{x}{6}=\frac{y}{-14}=\frac{z}{35}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{-14}=\frac{z}{35}=\frac{-2x-4y+5z}{\left(-2\right)\cdot6-4\cdot\left(-14\right)+5\cdot35}=\frac{146}{219}=\frac{2}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{6}=\frac{2}{3}\Rightarrow x=\frac{2}{3}\cdot6=4\\\frac{y}{-14}=\frac{2}{3}\Rightarrow y=\frac{2}{3}\cdot\left(-14\right)=\frac{-28}{3}\\\frac{z}{35}=\frac{2}{3}\Rightarrow z=\frac{2}{3}\cdot35=\frac{70}{3}\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(4;\frac{-28}{3};\frac{70}{3}\right)\)
b) Có: \(-3x=4y;6y=7z\Rightarrow\frac{x}{4}=\frac{y}{-3};\frac{y}{7}=\frac{z}{6}\Rightarrow\frac{x}{28}=\frac{y}{-21}=\frac{z}{-18}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{28}=\frac{y}{-21}=\frac{z}{-18}=\frac{x-2y+3z}{28-2\cdot\left(-21\right)+3\cdot\left(-18\right)}=\frac{-48}{16}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{28}=-3\Rightarrow x=\left(-3\right)\cdot28=-84\\\frac{y}{-21}=-3\Rightarrow y=\left(-3\right)\cdot\left(-21\right)=63\\\frac{z}{-18}=-3\Rightarrow z=\left(-3\right)\cdot\left(-18\right)=54\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(-84;63;54\right)\)
Theo đề bài ta có: \(\frac{x}{-3}=\frac{y}{7};\frac{y}{-2}=\frac{z}{5}\Rightarrow\frac{x}{-3}=\frac{y}{7};\frac{y}{5}=\frac{z}{-2}\)
\(\Rightarrow\frac{x}{-15}=\frac{y}{35};\frac{y}{35}=\frac{z}{-14}\Rightarrow\frac{x}{-15}=\frac{y}{35}=\frac{z}{-14}\)
Và -2x - 4y + 5z = 146
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{-15}=\frac{y}{35}=\frac{z}{-14}=\frac{-2x-4y+5z}{30-140-70}=\frac{146}{-180}=-\frac{73}{90}\)
Còn lại bạn tự làm nha.
Tìm x; y; z biết:
1) 2x = 3y - 2x và x + y = 14
2) 5x = 4x + 2y và x + y = -56
3) 3x + 2y = 7y - 3x và x - y = 10
4) 6x - 2y = 3y - 4x và x + y = -99
5) 7x - 2y = 5x - 3y và 2x + 3y = 20
6) 4x - 3y = 7y - 6x và 2x + 3y = 55
7) 2x = 3y = 4z - 2y và x + y + z = 45
8) 5x = 2y = 4z + y và x + y + z = 66
9) 2x = 5y = 3z - 2x và x + y + z = 62
10) 3x = 4y = 2z - x và x + y + z = 60
11) 2x = 3y - 2x = 5z và x - y + z = 99
12) 3x = 2y - 3z = 4z và x + y - z = 46
13) 2x = 3y - 2x = 4z - 3x và x - y + z = 44
14) 5x - 2y = 4y = 3z - 4y và x + y - z = 70
15) 2x - 3z = 4y - 2z = 7z và x + y + z = -99
16) 2x = 3y - 2x = 5z - 3y và x + y + z = 53
17) 3x = 4y - 2x = 7z - 4y và x + y - 2z = 10
18) 3x = 2y - 4x = 5z - 4y và x - y + x = 36
19) 5x - 3y = 4y = 3z + 10x và x + y + z = 28
20) 4x - 3z = 6y - x = z và 2x + 3y + 4z = 19
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
Tìm x,y,z (áp dụng t/c dãy tỉ số bằng nhao)
a) \(\frac{x}{-3}=\frac{y}{-7}\) ; \(\frac{y}{-2}=\frac{Z}{5}\)và -2x - 4y + 5Z = 146
b) -3x = 4y ; 6y = 7Z và x - 2y + 3Z = -48