cho a,b,c,d là các số nguyên thỏa mãn :a^5+b^5=4(c^5+d^5)
CMR:a+b+c+d chia hết cho 5
Cho a;b;c;d là các số nguyên tố > 2 thỏa mãn a^5+b^5+c^5+d^5 chia hết cho 40.Chứng minh a+b+c+d chia hết cho 40
Cho a,b,c,d là các số nguyên thỏa mãn a+b+c+d=2016 .Chúng minh rằng a^5+b^5+c^5+d^5 chia hết cho 6
Ta có a^5-a luôn chia hết cho 6
suy ra a^5+...+d^5 -2016 chia hết cho 6
dpcm
Cho các số nguyên a,b, c,d thỏa mãn \(a^5+b^5=29\left(c^5+d^5\right)\). CMR a+b+c+d chia hết cho 30
Với \(x\)nguyên bất kì, ta có: \(x^5-x=x\left(x^4-1\right)=x\left(x^2-1\right)\left(x^2+1\right)=x\left(x^2-1\right)\left(x^2-4\right)+5x\left(x^2-1\right)\)
\(=x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)+5x\left(x-1\right)\left(x+1\right)\)
Có \(x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)là tích của \(5\)số tự nhiên liên tiếp nên chia hết cho \(2,3,5\)mà \(\left(2,3,5\right)=1\)nên nó chia hết cho \(2.3.5=30\).
\(x\left(x-1\right)\left(x+1\right)\)là tích của \(3\)số tự nhiên liên tiếp nên chia hết cho \(2,3\)mà \(\left(2,3\right)=1\)nên chia hết cho \(2.3=6\)do đó \(5x\left(x-1\right)\left(x+1\right)\)chia hết cho \(30\).
Vậy \(x^5-x\)chia hết cho \(30\).
Ta có:
\(a^5+b^5+c^5+d^5-\left(a+b+c+d\right)\)
\(=\left(a^5-a\right)+\left(b^5-b\right)+\left(c^5-c\right)+\left(d^5-d\right)\)chia hết cho \(30\)
nên \(\left(a^5+b^5+c^5+d^5\right)\equiv\left(a+b+c+d\right)\left(mod30\right)\)
mà \(a^5+b^5+c^5+d^5=30\left(c^5+d^5\right)⋮30\)
suy ra \(a+b+c+d\)chia hết cho \(30\).
Cho a, b, c và d là các số nguyên tố thỏa mãn 5 < a < b < c < d < a + 10. Chứng minh rằng a + b + c + d chia hết cho 60.
cho đa thức p(x)=ax^3+bx^2+cx+d,với a b c d là các số nguyên.Biết p(x)chia hết cho 5 với mọi x nguyên. CMR:a b c d đều chia hết cho 5
Cho các số nguyên a, b, c, d thỏa mãn a3+b3=5(c3+7d3). CMR a+b+c+d chia hết cho 6
cho 4 số tự nhiên a,b,c,d chia cho 5 có số dư lần lượt là 1,2,3,4.CMR:a+b+c+d chia hết cho 5
Gọi 4 số lần lượt là 5k + 1, 5k + 2, 5k + 3 và 5k + 4.
Ta có: a+b+c+d = 20k + 10 = 5.(4k+2) chia hết cho 5.
cho a,b,c,d là các số nguyên thỏa mãn 5(a^3 + b^3 )=13(c^3 + d^3). Chứng minh a+b+c+d chia hết cho 6
Giups mik vs mik cảm ơn ạ
=>5(a^3+b^3+c^3+d^3)=18(c^3+d^3)
=>5(a^3+b^3+c^3+d^3) chia hết cho 6
=>a^3+b^3+c^3+d^3 chia hêt cho 6
a^3-a=a(a+1)(a-1) chia hết cho 3!=6
b^3-b=b(b+1)(b-1) chia hết cho 3!=6
c^3-c=c(c+1)(c-1) chia hết cho 3!=6
d^3-d=d(d+1)(d-1) chia hết cho 3!=6
=>a^3+b^3+c^3+d^3-a-b-c-d chia hết cho 6
=>a+b+c+d chia hết cho 6
cho 4 số tự nhiên a,b,c,d chia cho 5 có số dư lần lượt là 1,2,3,4.CMR:a+b+c+d chia hết cho 5
Gọi 4 số lần lượt là 5k + 1, 5k + 2, 5k + 3 và 5k + 4.
Ta có: a+b+c+d = 20k + 10 = 5.(4k+2) chia hết cho 5.