Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyệt Ánh Ngô
Xem chi tiết
I don
31 tháng 8 2018 lúc 19:43

1) ta có: \(x:3=y.15\Rightarrow x\cdot\frac{1}{3}=y.15\Rightarrow\frac{x}{15}=\frac{y}{\frac{1}{3}}\)

ADTCDTSBN

...

2) bn ghi thiếu đề r

3) ta có: \(3x=7y\Rightarrow\frac{x}{7}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=7k\\y=3k\end{cases}}\)

mà xy = 189 => 7k.3k = 189

                          21 k2 = 189

                                 k2 = 9 = 32 = (-3)2 => k = 3 hoặc k  = - 3

TH1: k = 3

x = 7.3 => x  = 21

y = 3.3 => y = 9

...

                           

I don
31 tháng 8 2018 lúc 19:44

4) ta có: \(4x=5y\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x^2}{25}=\frac{y^2}{16}\)

ADTCDTSBN

...

lê trần minh quân
Xem chi tiết
Không Tên
31 tháng 1 2018 lúc 22:24

BÀI 2:

\(\left|x\right|=11\)\(\Rightarrow\)\(x=\pm11\)

\(\left|y+1\right|=15\)\(\Rightarrow\)\(\orbr{\begin{cases}y+1=15\\y+1=-15\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}y=-14\\y=-16\end{cases}}\)

lê trần minh quân
Xem chi tiết
nguyenchieubao
Xem chi tiết
dương thị lệ châu
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 1 2022 lúc 21:01

a: k=-2/5

=>y=-2/5x

Khi x=-1 thì y=2/5

b: Khi y=3 thì -2/5x=3

hay x=3:(-2/5)=-3x5/2=-15/2

Stepht Chim Ry
Xem chi tiết
Bùi Chí Phương Nam
Xem chi tiết
Hoàng Phúc
12 tháng 8 2016 lúc 10:52

a, Từ x+y=1

=>x=1-y

Ta có: \(x^3+y^3=\left(1-y\right)^3+y^3=1-3y+3y^2-y^3+y^3\)


\(=3y^2-3y+1=3\left(y^2-y+\frac{1}{3}\right)=3\left(y^2-2.y.\frac{1}{2}+\frac{1}{4}+\frac{1}{12}\right)\)

\(=3\left[\left(y-\frac{1}{2}\right)^2+\frac{1}{12}\right]=3\left(y-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\) với mọi y

=>GTNN của x3+y3 là 1/4

Dấu "=" xảy ra \(< =>\left(y-\frac{1}{2}\right)^2=0< =>y=\frac{1}{2}< =>x=y=\frac{1}{2}\) (vì x=1-y)

Vậy .......................................

b) Ta có: \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{y+x}\)

\(=\left(\frac{x^2}{y+z}+x\right)+\left(\frac{y^2}{z+x}+y\right)+\left(\frac{z^2}{y+z}+z\right)-\left(x+y+z\right)\)

\(=\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{y+z}-\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}-1\right)\)

Đặt \(A=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}\)

\(A=\left(\frac{x}{y+z}+1\right)+\left(\frac{y}{z+x}+1\right)+\left(\frac{z}{y+x}+1\right)-3\)

\(=\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{y+x}-3\)

\(=\left(x+y+z\right)\left(\frac{1}{y+x}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3\)

\(=\frac{1}{2}\left[\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\right]\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3\ge\frac{9}{2}-3=\frac{3}{2}\)

(phần này nhân phá ngoặc rồi dùng biến đổi tương đương)

\(=>P=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}-1\right)\ge2\left(\frac{3}{2}-1\right)=1\)

=>minP=1

Dấu "=" xảy ra <=>x=y=z

Vậy.....................

Linh
Xem chi tiết
Thám Tử THCS Nguyễn Hiếu
15 tháng 3 2020 lúc 22:45

chưa đủ dữ liệu sao làm bạn?

Khách vãng lai đã xóa
thanh thuý
Xem chi tiết
thanh thuý
4 tháng 11 2021 lúc 22:10

mọi người giải giúp e với ạ :3

 

Nguyễn Lê Phước Thịnh
4 tháng 11 2021 lúc 22:11

Bài 1:

b: Để (d) vuông góc với (d2) thì \(\left(m^2+2m\right)\cdot\dfrac{-1}{3}=-1\)

\(\Leftrightarrow m^2+2m-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=1\end{matrix}\right.\)