CHO TAM GIÁC ABC NHỌN. VẼ RA PHÍA NGOÀI CÁC TAM GIÁC VUÔNG CÂN ABD VÀ ACE. VẼ AH VUÔNG GÓC BC. TIA HA CẮT DE TẠI K
CM: K LÀ TRUNG ĐIỂM CỦA DE
Cho tam giác ABC có góc A nhọn, phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD, ACE. Gọi M là trung điểm của BC. Cm AM = 1/2 DE và AM vuông góc DECho tam giác ABC có góc A nhọn, phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD, ACE. Gọi M là trung điểm của BC. Cm AM = 1/2 DE và AM vuông góc DECho tam giác ABC có góc A nhọn, phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD, ACE. Gọi M là trung điểm của BC. Cm AM = 1/2 DE và AM vuông góc DE
1. Cho tam giác ABC nhọn vẽ về phía ngoài tam giác ABC các tam giác vuông cân BAD và ACE ( tại A ). cm
a, BD^2 + CE^2 = BC^2 + DE^2
b, Đường thẳng đi qua A và vuông góc với DE cắt BC ở K. cm K là trung điểm BC
2. Cho tam giác ABC vuông tại A. Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao điểm BE và CD. cm IA là phân giác góc DIE
cho tam giác ABC, vẽ ra phía ngoài tam giác ABC các tam giác vuông cân ABD và ACE( cân tại A). AH vuông với BC, M là trung điểm của BC
a. CM AH đi qua trung điểm của DE
b. CM đường thẳng AM vuông góc với DE
a: Vẽ DI,EK vuông góc AH
Xét ΔIDA và ΔHAB có
góc DIA=góc AHB
AD=AB
góc A1=góc ABH(=90 độ-góc A2)
=>ΔIDA=ΔHAB
=>ID=AH(1)
Xét ΔKAE và ΔHCA có
góc EKA=góc AHC
AE=AC
góc EAK=góc HCA
=>ΔKAE=ΔHCA
=>AH=EK=DI
Gọi giao của AH và DE là N
Xét ΔDIN và ΔKEN co
góc DIN=góc EKN
DI=EK
góc ENK=góc DNK
=>ΔDIN=ΔKEN
=>EN=DN
=>N là trung điểm của DE
b: Lấy F đối xứng A qua M
Xet ΔAMB và ΔFMC có
MA=MF
góc AMB=góc FMC
MB=MC
=>ΔAMB=ΔFMC
=>AB=CF và góc B=góc FCM
=>góc ACF=góc ACB+góc B=180 độ-góc BAC
Gọi giao của AM và DE là I
Xet ΔACF và ΔEAD có
AC=ED
CF=AD
góc EAD=góc ACF
=>ΔACF=ΔEAD
=>AF=DE
=>AM=1/2DE
ΔAMB=ΔFMC
=>góc BAM=góc MFC
ΔACF=ΔEAD
=>góc MFC=góc EDA
=>góc BAM=góc EDA
=>góc EDA+góc DAI=90 độ
=>AM vuông góc DE
Cho tam giác ABC cân tại A, các đường thẳng qua B vuông góc với AB và qua C vuông góc với AC cắt nhau tại S
a) Chứng minh tam giác SBC cân
b) Trên tia đối của tia BS lấy điểm D, trên tia đối của tia CS lấy điểm E sao cho CE=BD. Chứng minh rằng DE song song BC
Bài 3: Cho tam giác ABC. Vẽ ra phía ngoài tam giác ABC các tam giác vuông cân ở A là ABD và ACE. Dựng AH vuông góc với BC, đường thẳng HA cắt DE ở K. Dựng AI vuông góc với DE, đường thẳng IA cắt BC tại M. Chứng minh rằng:
a) Tam giác AEK = Tam giác CAM
b) KD = KE
cho tam giác ABC nhọn. vẽ ra phía ngoài tam giác ABC hai tam giác vuông cân là ABD và ACE. gọi M là trung điểm BC. CMR: a,2AM=DE b,AM vuông góc DE
cho tam giác ABC nhọn. vẽ ra phía ngoài tam giác ABC hai tam giác vuông cân là ABD và ACE. gọi M là trung điểm BC. CMR: a,2AM=DE b,AM vuông góc DE
cho tam giác ABC. dựng ra phía ngoài tam giác abc là các tam giác abd và ace là các tam giác vuông cân rại đỉnh A ké ah vuông góc với BC đường thẳng AH cắt de tại m vẽ DI và EK cùng vuông góc với AH chứng Minh rằng :
a, DI=EK=AH
b, M là trung điểm của DE
hic em chào chị em mới lớp 5 em thật vô lễ qá xin lỗi chị
Cho tam giác nhọn ABC . Ở phía ngoài tam giác ABC , vẽ các tam giác vuông cân tại A là ABD và ACE . Kẻ AH vuông góc với BC ( H thuộc BC ) . Gọi I là giao điểm của HA và DE
Giúp mình nha đây là bài tập nâng cao
Cho tam giác ABC vuông tại A. Vẽ ở phía ngoài tam giác ấy các tam giác BAD, CAE vuông cân tại A. Vẽ AH vuông góc với BC, đường thẳng HA cắt DE ở K. Chứng minh rằng K là trung điểm của DE