giải phương trình nghiệm nguyên y^2=x^4+x^3+x^2+x+1
GIÚP MÌNH NHA MỌI NGƯỜI
Tìm nghiệm nguyên của phương trình:
4/x+2/y=1
Giúp em với! Cần gấp ạ!
mọi người giúp em với!
giải phương trình nghiệm nguyên 7*(x^2+x*y+y^2)=39*(x+y)
Giải phương trình nghiệm nguyên:
1, x2 + y2 = 16z + 6
2, x! + y! = z!
3, x! + y! = ( x + y )!
Mọi người giúp e với ạ
Giải phương trình nghiệm nguyên dương: \(2\left(x+y+z\right)=xyz\)
Mong mọi người giúp
Mọi người ơi giúp mình bài này với😻 Nghĩ mãi mà chẳng ra!😭
Tìm các nghiệm nguyên của các phương trình: a)x^3+x^2+x+1=y^3
b)x^4+x^3+x^2+x+1=y^2
c) x(x^2+x+1)=4y(y+1)
d) x^4+x^3+x^2+x=y^2+y
Ai làm đúng, nhanh mình tick cho💞
Mấy bài này khó :( nghĩ được bài nào làm bài đấy nhé, bạn thông cảm
a, Dùng phương pháp kẹp
Do \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
\(\Rightarrow x^3+x^2+x+1>x^3\)
\(\Rightarrow y^3>x^3\)
\(\Rightarrow y>x\)(1)
Xét hiệu \(\left(x+2\right)^3-y^3=x^3+6x^2+12x+8-y^3\)
\(=x^3+6x^2+12x+8-x^3-x^2-x-1\)
\(=5x^2+11x+7\)
\(=5\left(x+\frac{11}{10}\right)^2+\frac{19}{20}>0\forall x\)
\(\Rightarrow\left(x+2\right)^3>y^3\)
\(\Rightarrow x+2>y\)(2)
Từ \(\left(1\right)\&\left(2\right)\Rightarrow x< y< x+2\)
Mà \(x;y\inℤ\Rightarrow y=x+1\)
Thế vào pt ban đầu đc \(x^3+x^2+x+1=\left(x+1\right)^3\)
\(\Leftrightarrow x^3+x^2+x+1=x^3+3x^2+3x+1\)
\(\Leftrightarrow2x^2+2x=0\)
\(\Leftrightarrow2x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(tm\right)}\)
*Với x = 0 => y= 1
*Với x = -1 => y = 0
Vậy ...
Câu b có thể nhân cả 2 vế của pt với 4 rồi kẹp y2 giữa (2x2 + x)2 với (2x2 + x + 2)2
Khi đó y2 = (2x2 + x + 1)2 ! Đến đây thì dễ rồi
Giải phương trình: \(x^2+6x+6+\left(\frac{x+3}{x+4}\right)^2=0\)
Phương trình ra nghiệm không đẹp nhưng mọi người vẫn giải giùm mình nhé
Tick cho mình trước khi đọc nha thể nào cũng đúng
Ta có \(x^2+6x^2+6+\left(\frac{x+3}{x+4}\right)^2=0\)
\(\Leftrightarrow\left(x+3\right)^2+\left(\frac{x+3}{x+4}\right)^2-3=0\)
\(\Leftrightarrow\left(x+3\right)^2-2\left(x+3\right)\frac{\left(x+3\right)}{\left(x+4\right)}+\left(\frac{x+3}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
\(\Leftrightarrow\left(x+3-\frac{x+3}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
\(\Leftrightarrow\left(\frac{\left(x+3\right)\left(x+4\right)-\left(x+3\right)}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
\(\Leftrightarrow\left(\frac{x^2+7x+12-\left(x+3\right)}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
\(\Leftrightarrow\left(\frac{x^2+6x+9}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
\(\Leftrightarrow\left(\frac{\left(x+3\right)^2}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
Đặt \(\frac{\left(x+3\right)^2}{x+4}=a\) pt <=> \(a^2+2a-3=0\Leftrightarrow\left(a+3\right)\left(a-1\right)=0\)
nên a=-3 hoặc a=1
Với a=-3 thì \(\frac{\left(x+3\right)^2}{x+4}=-3\Leftrightarrow x^2+6x+9=-3\left(x+4\right)\Leftrightarrow x^2+9x+21=0\)
nên pt này vô nghiệm
Với a=1 thì \(\frac{\left(x+3\right)^2}{x+4}=1\Leftrightarrow x^2+6x+9=\left(x+4\right)\Leftrightarrow x^2+5x+5=0\)
Giải ra được 2 nghiệm
Vậy....
Giải phương trình: \(x^2+6x+6+\left(\frac{x+3}{x+4}\right)^2=0\)
Phương trình ra nghiệm không đẹp nhưng mọi người vẫn giải giùm mình nhé
biết nghiệm là biết cách làm rồi,hỏi chi
Mọi người giúp tôi với.
Giải phương trình nghiệm nguyên : x^4 + 2*y^2 = 1
Giúp mình bài này ạ:
Bài 1:a) Chứng minh rằng không tồn tại các cặp số x,y thỏa mãn:
8x2+26xy+29y2=10001
b) Giải phương trình nghiệm nguyên 2xy-2y+x^2-4x+2=0
c) Giải phương trình 4+2√2−2x22−2x2=3√x+3√2−x