Tìm 2 số nguyên dương x;y
Sao cho x<y và \(\frac{1}{x}+\frac{1}{y}=\frac{1}{8}\)
GIÚP MÌNH VỚI!!!!!!!!!!!!!!MÌNH CẦN GẤP!!!!!!!!!!
tìm số nguyên dương x nhỏ nhất 12*x=25*y^2,trong đó ý là 1 số nguyên dương
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)
a. tìm tất cả các số nguyên dương n sao cho 3n +63 là bình phương của một số nguyên dương .
b. tìm các số nguyên x,y thõa mãn x2 + 3y2 = ( 3y+1) x
a)tìm số nguyên dương x để x-4/x+2 là số hữu tỉ âm
b)tìm số nguyên âm x để x+4/x-2 là số hữu tỉ âm
a)
Gọi x là số cần tìm, ta có:
\(x+2>0\left(x>0\right)\)
\(\Rightarrow x-4< 0\)
\(\Rightarrow x< 4\)
\(x=\left\{1;2;3\right\}\)
b)
Gọi x là số cần tìm, khi đó:
\(x-2< 0\left(x< 0\right)\)
\(x+4>0\left(\forall x>-4\right)\)
\(\Rightarrow x=\left(-3;-2;-1\right)\)
Tìm các số nguyên dương x,y thỏa mãn: \(\frac{x^2}{2xy^2-y^3+1}\)là 1 số nguyên dương
Tìm mọi cặp số nguyên dương x,y sao cho \(\frac{x^4+2}{x^2y+1}\)là số nguyên dương
a) Tìm tất cả các số nguyên tố p và các số nguyên dương x,y biết : p -1=2x(x+2) và p2-1 =2y(y+2)
b) Tìm tất cả các số nguyên dương n sao cho tồn tại x,y,z là các số nguyên dương thỏa mãn x3+y3 +z3 =n.x2y2z2
tìm các số nguyên dương n(n>1)thỏa mãn với mọi số nguyên dương x nguyên tố cùng nhau với n thì x^2 - 1 chia hết cho n
Với mỗi số nguyên dương n, ta kí hiệu d(n) là số các ước nguyên dương của n và s(n) là tổng tất cả các ước nguyên dương đó. Ví dụ, d(2018) = 4 vì 2018 có (và chỉ có) 4 ước nguyên dương là 1; 2; 1009; 2018 và s(2018) = 1 + 2 + 1009 + 2018 = 3030. Tìm tất cả các số nguyên dương x sao cho s(x) . d(x) = 96
Tìm các số nguyên dương x,y thỏa mãn: \(\frac{x^2}{2xy^2-y^3+1}\) là một số nguyên dương
Gắt thế,IMO 2003
Đặt \(S=\frac{x^2}{2xy^2-y^3+1}\)
Xét \(b=1\Rightarrow S=\frac{x^2}{2x}=\frac{x}{2}\Rightarrow x=2k\) thỏa mãn
Xét \(b>1\) Đặt \(\frac{x^2}{2xy^2-y^3+1}=u\)
\(\Rightarrow x^2-2y^2ux+\left(y^3-1\right)u=0\)
Xét \(\Delta=\left(2y^2u\right)^2-4\left(b^3-1\right)u\) phải là số chính phương
Ta dễ dàng chứng minh được \(\left(2y^2u-y-1\right)^2< \Delta< \left(2y^2u-y+1\right)^2\)
\(\Rightarrow\Delta=\left(2y^2u-y\right)^2\Rightarrow y^2=4u\)
Đặt \(y=2t\Rightarrow x=t\left(h\right)x=8t^4-t\)
Vậy.........................