tính \(\frac{A}{B}\)
\(A=\frac{1}{1.300}+\frac{1}{1.301}+\frac{1}{1.303}+........\frac{1}{101.400}\)
\(B=\frac{1}{1.102}+\frac{1}{2.103}+\frac{1}{3.104}+.......\frac{1}{299.400}\)
Tính: \(\frac{\frac{1}{1.300}+\frac{1}{2.301}+\frac{1}{3.302}+...+\frac{1}{101.400}}{\frac{1}{1.102}+\frac{1}{2.103}+\frac{1}{3.104}+...+\frac{1}{299.400}}\)
cghsbbvb hs bsc x bvbddddddd c n snsnfERGQHZ NAC nnnnNNNNNNNNNNNNNNNNNNNNNNNN nsn v
tgrtyfdytiloniyu7d tadftr DxZhfhygd ỳdstAACA
ngu vậy chết mm đi
\(\frac{\frac{1}{1.300}+\frac{1}{2.301}+\frac{1}{3.302}+.............+\frac{1}{101.400}}{\frac{1}{1.102}+\frac{1}{2.103}+\frac{1}{3.104}+.......+\frac{1}{299.400}}\)
Tính:
A=\(\frac{\frac{1}{1.300}+\frac{1}{2.301}+\frac{1}{3.302}+...+\frac{1}{101.400}}{\frac{1}{1.102}+\frac{1}{2.103}+\frac{1}{3.104}+...+\frac{1}{299.400}}\)
Giúp mình nha các bạn
tính tỉ số\(\frac{A}{B}\)bằng cách nhanh nhất biết :
A=\(\frac{1}{1.300}+\frac{1}{2.301}+\frac{1}{3.302}+...+\frac{1}{101.400}\)
B=\(\frac{1}{1.102}+\frac{1}{2.103}+\frac{1}{3.104}+...+\frac{1}{299.400}\)
Ta có:
\(A=\frac{1}{1.300}+\frac{1}{2.301}+...+\frac{1}{101.400}\)
\(\Rightarrow A=\frac{1}{299}.\left(\frac{299}{1.300}+\frac{299}{2.301}+...+\frac{299}{101.400}\right)\)
\(\Rightarrow A=\frac{1}{299}.\left(1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+...+\frac{1}{101}-\frac{1}{400}\right)\)
\(\Rightarrow A=\frac{1}{299}.\left[\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]\)
Lại có:
\(B=\frac{1}{1.102}+\frac{1}{2.103}+...+\frac{1}{299.400}\)
\(\Rightarrow B=\frac{1}{101}.\left(\frac{101}{1.102}+\frac{101}{2.103}+...+\frac{101}{299.400}\right)\)
\(\Rightarrow B=\frac{1}{101}.\left(1-\frac{1}{102}+\frac{1}{2}-\frac{1}{103}+...+\frac{1}{299}-\frac{1}{400}\right)\)
\(\Rightarrow B=\frac{1}{101}.\left[\left(1+\frac{1}{2}+...+\frac{1}{299}\right)-\left(\frac{1}{102}+\frac{1}{103}+...+\frac{1}{400}\right)\right]\)
\(\Rightarrow B=\frac{1}{101}.\left[\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{299}.\left[\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]}{\frac{1}{101}.\left[\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]}\)
\(\Rightarrow\frac{A}{B}=\frac{1}{299}:\frac{1}{101}\)
\(\Rightarrow\frac{A}{B}=\frac{101}{299}.\)
Vậy \(\frac{A}{B}=\frac{101}{299}.\)
Chúc bạn học tốt!
cho \(A=\frac{1}{1.300}+\frac{1}{2.301}+\frac{1}{3.302}+.....+\frac{1}{101.400}\)
\(B=\frac{1}{1.102}+\frac{1}{2.103}+\frac{1}{3.104}+....+\frac{1}{299.400}\)
so sánh A và B
\(A=\frac{\frac{1}{1.300}+\frac{1}{2.301}+...+\frac{1}{101.400}}{\frac{1}{1.102}+\frac{1}{2.103}+...+\frac{1}{299.400}}\)
Tính A biết :
\(A=\frac{\frac{1}{1.300}+\frac{1}{2.301}+...+\frac{1}{101.400}}{\frac{1}{1.102}+\frac{1}{2.103}+...+\frac{1}{299.400}}=\frac{1}{154526}\)
Tính tỉ số \(\frac{A}{B}\)biết:
\(A=\frac{1}{1.300}+\frac{1}{2.301}+\frac{1}{3.302}+...+\frac{1}{101.400}\)
và \(B=\frac{1}{1.102}+\frac{1}{2.103}+\frac{1}{3.104}+...+\frac{1}{299.400}\)
\(A=\frac{1}{299}.\left(1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+...........+\frac{1}{101}-\frac{1}{400}\right)\)
\(=\frac{1}{299}.\left(1+\frac{1}{2}+........+\frac{1}{101}-\frac{1}{300}-\frac{1}{301}-....-\frac{1}{400}\right)\)
\(B=\frac{1}{101}.\left(1-\frac{1}{102}+\frac{1}{2}-\frac{1}{103}+........+\frac{1}{299}-\frac{1}{400}\right)\)
\(=\frac{1}{101}.\left(1+\frac{1}{2}+.......+\frac{1}{299}-\frac{1}{102}-\frac{1}{103}-............-\frac{1}{400}\right)\)
\(=\frac{1}{101}\left(1+\frac{1}{2}+......+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{299}-\frac{1}{102}-.....-\frac{1}{300}-....-\frac{1}{400}\right)\)
\(=\frac{1}{101}\left(1+\frac{1}{2}+........+\frac{1}{101}-\frac{1}{300}-\frac{1}{301}-...-\frac{1}{400}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{299}}{\frac{1}{101}}=\frac{101}{299}\)
299A=(1+1/2+1/3+...+1/101)-(1/300+1/301+...+1/400)=C
101B=(1+1/2+1/3+...+1/299)-(1/102+1/103+..+1/400)=D=C
=>A/B=C/299.101/C=101/299
Cho \(A=\frac{1}{1.300}+\frac{1}{2.301}+\frac{1}{3.302}+...+\frac{1}{101.400}\)
\(B=\frac{1}{1.102}+\frac{1}{2.103}+\frac{1}{3.104}+...+\frac{1}{299.400}\)
Tính \(A:B\)
Tính bằng cách hợp lí:
a) A=\(\left(\frac{1}{1.300}+\frac{1}{2.301}+\frac{1}{3.302}+....+\frac{1}{101.400}\right):\left(\frac{1}{1.102}+\frac{1}{2.103}+\frac{1}{3.104}+...+\frac{1}{299.400}\right)\)
b) B=\(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+....+\frac{1}{200}\right):\left(\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+....\frac{198}{2}+\frac{199}{1}\right)\)
S= 1/199 + 2/198 + ... + 198/2 + 199/1
S= (1/199 + 1) + (2/198 + 1)+ ... + (198/2 + 1) +1
S= 200/200 + 200/199 + 200/198 + ... + 200/2
S= 200.(1/200 + 1/199 + ... + 1/2)
Suy ra , B=(1/2 + 1/3 + ... +1/200) : 200.(1/2 + 1/3 + ... + 1/200)
B=1 : 200 = 1/200