Cho tam giác ABC có AB=AC và AB>BC. Trên tia BC, lấy điểm M sao cho MC=MB. Vẽ tia Bx//AM (Bx và Am cùng nằm trong nửa mặt phẳng MBA). Trên tia Bx lấy điểm N sao cho BN+CM
a) Chứng minh góc ABN=góc ACM
b) So sánh AM và AN
cho tam giác ABC cân tại A (AB>BC) . Trên tia BC lấy điểm M sao cho MA=MB . Vẽ tia Bx song song với AM (Bx và AM cùng nằm trong nửa mặt phẳng bờ AB). Trên tia Bx lấy điểm N sao cho BN=CM. Chứng minh rằng:
a, Góc ABN=Góc ACM
b, Tam giác AMN cân
Đáp án:
a) Xét ΔABN và ΔACM có:
+ AB = AC
+ góc ABN = góc ACM (do BN// AM)
+ BN = CM
=> ΔABN = ΔACM (c-g-c)
b) DO ΔABN = ΔACM
=> AN = AM
=> ΔAMN cân tại A
tam giác ABC cân tại A (AB>BC). Trên tia BC lấy M sao cho MA = MB. Vẽ tia Bx//AM (Bx và AM cùng nằm trong nửa mặt phẳng là AB). Trên tia Bx lấy N sao cho BN = CM. Chứng minh: góc ABN = góc ACM
theo t/c góc ngoài tam giác ACB ta có:
ACM=CAB+ABC=180-2ABC+ABC=180-ABC
ABN=180-MAB(do BN//AM)
=180-ABC=> DPCM
Cho tam giác ABC cân tại A(AB>BC). Trên tia BC lấy điểm M sao cho MA=MB. Vẽ tia Bx// AM ( Bx và AM cùng nằm trong nửa mặt phẳng bờ AB). Trên tia Bx lấy điểm N sao cho BN=CM. Chứng minh rằng:
a) Tam giác ABN= tam giác ACM;
b) Tam giác AMN cân;
cíu em với mấy anh chị ơiiiiiiiiiiiiiiiiiiiiiiiiiii
a: Xét ΔABN và ΔACM có
AB=AC
góc ABN=góc ACM
BN=CM
=>ΔABN=ΔACM
b: ΔABN=ΔACM
=>AM=AN
=>ΔAMN cân tại A
Cho tam giác ABC cân tại A (AB<BC). Trên tia BC lấy điểm M sao cho MA=MB. Vẽ tia Bx//AM ( Bx và AM cùng nằm trong nửa mặt phẳng bờ AB). Trên Bx lấy điểm N sao cho BN=CM. Chứng minh: Tam giác AMN cân
Sorry bn mk chua hoc tg cân nên ko bt giai nhug hih mk bt ve
ko bt co dug o nhe!
sai đề rùi
cân tại A → AB=AC rùi còn j nữa
thấy đugs thì tick nha
Cho tam giác ABC cân tại A (AB > BC). Trên tia BC lấy điểm M sao cho MA = MB. Vẽ tia Bx song song với AM (Bx và AM cùng nằm trong nửa mặt phẳng bờ AB). Trên Bx lấy điểm N sao cho BN = CM. Chứng minh rằng :
a) ABN = ACM
b) tam giác AMN cân
Đáp án:
a) Xét ΔABN và ΔACM có:
+ AB = AC
+ góc ABN = góc ACM (do BN// AM)
+ BN = CM
=> ΔABN = ΔACM (c-g-c)
b) DO ΔABN = ΔACM
=> AN = AM
=> ΔAMN cân tại A
Cho tam giác ABC cân tại A (AB > BC). Trên tia BC lấy điểm M sao cho MA = MB. Vẽ Bx // AM (Bx và AM cùng nằm trong nửa mp bờ AB). Trên tia Bx lấy điểm N sao cho BN = CM. Chứng minh : a) ABN = ACM b) tam giác AMN cân
bn tham khảo nha:
https://olm.vn/hoi-dap/detail/6244183766.html
Cho tam giác ABC cân tại A (AB>BC).Trên tia BC lấy điểm M sao cho MA=MB.Vẽ Bx // AM (Bx và AM cùng nằm trong nửa mặt phẳng bờ AB).Trên Bx lấy điểm N sao cho BN=CM.CMR:
a) Góc ABN = góc ACM
b) Tam giác AMN cân
a) Tam giác MAB cân tại M nên góc BAM=góc ABM
Tam giác ABC cân tại A nên góc ACB=góc ABM
=> góc BAM= góc ACB (1)
Có Bx // AM nên góc ABN+góc BAM =180o (2) (cặp góc trong cùng phía bù nhau)
Có góc ACM+góc ACB=1800 (kề bù) (3)
Từ (1(,(2),(3)=> góc ABN= góc ACM
b) tam giác ABN= tam giác ACM (c-g-c) =>AN=AM
do đó tam giác AMN cân
Cho tam giác ABC cân tại A(AB>BC). Trên tia BC lấy điểm M sao cho MA=MB. Vẽ tia Bx//AM( Bx và AM nằm trong một nửa mặt phẳng bờ AB). Trên tia Bx lấy điểm N sao cho BN=CM. Chứng minh rằng:
a) ∆ABN=∆ACM
b) ∆AMN là tam giác cân
Các bạn giải chi tiết giúp mk nhé
a, \(\Delta\)MAB cân tại M nên ^BAM = ^ABM
\(\Delta\)ABC cận tại A nên ^ACB = ^ABM
=> ^BAM = ^ACM (1)
Có : ^ABN + ^BAM = 180^0 (vì Bx // AM) (2) =)) cặp góc trong cùng phía
Có : ^ACM = ^ACB = 180^0 (kề bù) (3)
Từ 1;2;3 => ^ABN = ^ACM
b, Xét \(\Delta\)ABN và \(\Delta\)ACM ta có
AB = AC (gt)
BN = CN (gt)
^ABN = ^ACM (cmt)
=> \(\Delta\)ABN = \(\Delta\)ACM (c.g.c)
=> AN = AM (tương ứng)
Vậy \(\Delta\)AMN cân tại A
cho tam giác ABC cân tại A (AB>AC). Trên BC lấy M sao cho MA=MB. Vẽ tia Bx // AM (Bx và AM cùng nằm trong nữa mặt phẳng MAB). Trên Bx lấy N sao cho BN=CN
a, chứng minh góc ABM= góc ACN
b, chứng minh tam giác AMN
tham khảo ở đây nhé :
Câu hỏi của Nàng tiên cá - Toán lớp 7 - Học toán với OnlineMath