Chứng minh 1×2×3×...×2012×(1+1/2+1/3+1/4+...+1/2012 chia hết cho 3
Ai nhanh mình tk cho nha !
cho A= 1.2.3.4..........2012.(1+1/2+1/3+1/4+............+1/2012)
Chứng minh A chia hết cho 2013
Bài 1 so sánh P và Q
P=2010/2011+2011/2012+2012/2013
Q=2010+2011+2012/2011+2012+2013
Bài 2 :a [7x-11]=2 mũ 5 nhân 3 mũ 2 +200
b hỗn số 3 1/2 x + hỗn số 16 3/4 = -13,25
bài 3; chứng minh ababab chia hết cho 3
giup mình nha kich cho
nhanh len
Cho B=1.2.3.......2012.(1+1/2+1/3+.....+1/2012).Chứng minh rằng B chia hết cho 2013
B = 1.2.3.....2012(1+1/2+1/3+...+1/2012)
Ta thấy từ 1 đến 2012 sẽ có hai số là 3 và 1342, mà 3x1342=4026 chia hết cho 2013
=> B = 1.2.(3.1342).5...1341.1343.....2012.(1+1/2+1/3...+1/2012)
B = 1.2.4026.5...1341.1343.....2012.(1+1/2+1/3...+1/2012)
=> B chia hết cho 2013
Bài toán này cho thêm tổng một dãy phân số trong ngoặc chỉ để mình hoang mang thôi bạn nhé =))
Chúc bạn học tốt, nhớ tích câu trả lời của mình nhé !
1. Tìm x,y : a. 2(x+3)=3(1-x)
b. 1352xy chia hết cho 24 ( x,y là các chữ số )
2. Cho A = 3+3^2+3^3+....+3^2012
a. tính a
b. Chứng minh A chia hết cho 120
Làm hộ mình nhanh nhanh với nha mình cần gấp ngay bây giờ
Cho B = 1 x 2 x 3 x ... x 2012 x (1+1/2+1/3+...+1/2012
Chứng minh rằng B chia hết cho 2013
a) chứng minh rằng A = 1+4+4^2+4^3+......4^2012 chia hết cho 21
b)chứng minh rằng A=1+7+7^2+7^3+............+7^101 chia hết cho 8
a)
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)
A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)
A=21+43.21+...+447.21A=21+43.21+...+447.21
A=21(1+43+...+447)A=21(1+43+...+447)
⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả
Cho A = 1/2 nhân 7 mũ 2012 tất cả mũ 2015 - 3 mũ 92 tất cả mũ 2012. Chứng minh A chia hết cho 5
mình cần gấp lắm, các bạn giải hộ mình nha! Mình cảm ơn!
B= 1.2.3.....2012.(1+1/2+1/3+1/4+...+1/2010)
chứng minh B chia hết cho 2013
S = 1 + 2 1 + 3 1 + 4 1 + ... + 2012 1 + 2013 1 − 2 2 1 + 4 1 + 6 1 + ... + 2012 1 S = 1 + 2 1 + 3 1 + ... + 2012 1 + 2013 1 − 1 − 2 1 − 3 1 − ... − 1006 1 S = 1007 1 + 1008 1 + ... + 2012 1 + 2013 1 = P =>(S-P)2013=02013=0
cho A = 3^1 + 3^2 +3^3 +3^4+...+3^2012.chứng minh rằng A chia hết cho 120
\(A=\left(3+3^2+3^3+3^4\right)+3^4\left(3+3^2+3^3+3^4\right)+...+3^{2008}\left(3+3^2+3^3+3^4\right)\)
\(=120+3^4.120+...+3^{2008}.120=120\left(1+3^4+...+3^{2008}\right)⋮120\)
\(A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(A=\left(3+3^2+3^3+3^4\right)+...+3^{2008}\left(3+3^2+3^3+3^4\right)\)
\(A=\left(3+3^2+3^3+3^4\right)\left(1+3^4+...+3^{2008}\right)\)
\(A=120\left(1+3^4+...+3^{2008}\right)⋮120\)
\(A=3+3^2+3^3+...+3^{2012}\)
\(A=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{2009}+...+3^{2012}\right)\)
\(A=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)
\(A=3.40+3^5.40+...+3^{2009}.40\)
\(A=120+3^4.120+...+3^{2008}.120\)
\(A=120\left(1+3^4+...+3^{2008}\right)⋮120\)