Cho tam giác ABC nhọn , góc C = 45o . Vẽ BD vuông góc với AC , CE vuông góc với AB . Gọi H là giao điểm của BD và CE . Chứng minh rằng : AB=HC
Tam giác ABC nhọn, góc C=450. Vẽ BD vuông góc với AC, CE vuông góc với AB. Gọi H là giao điểm của BD và CE. C/minh: AB=HC
Hình tự vẽ nha.
Trong tam giác BDC có:
góc DBC + BDC + DCB = 1800
=> DBC = 180 - (DCB + BDC) = 180-(45 + 90) = 450
Có: góc DBC = DCB = 450
=> tam giác BDC vuông cân tại D
=> DB = DC (1)
Ta có: góc ABD + góc BAD = 900
góc ACE + góc CAE = 900
=> góc ABD = góc DCH ( cùng phụ với góc BAD) (2)
Xét tam giác ABD và tam giác HCD có:
góc ADB = HDC = 900
cạnh BD = CD (chứng minh trên (1))
góc ABD = góc HCD (chứng minh trên (2))
=> tam giác ABD = tam giác HCD (gcg)
=> AB = HC
Vậy AB = HC
Cho tam giác ABC có ba góc nhọn, AB < AC. Kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm cửa BD và CE. So sánh độ dài HB và HC.
Bài 5: Cho tam giác ABC có ba góc nhọn, AB<AC. Kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE. So sánh độ dài HB và HC.
Bài 6: Cho tam giác ABC có AB<AC. Tia phân giác của góc B và C cắt nhau tại I. Từ I vẽ IH vuông góc với BC. So sánh độ dài HB và HC.
Câu hỏi là j vậy bn ?
what the hell??????
Bài 5: Cho tam giác ABC có ba góc nhọn, AB<AC. Kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE. So sánh độ dài HB và HC.
Bài 6: Cho tam giác ABC có AB<AC. Tia phân giác của góc B và C cắt nhau tại I. Từ I vẽ IH vuông góc với BC. So sánh độ dài HB và HC.
~~~Đây,các bạn giúp mk vs~~~
Bài 5: Cho tam giác ABC có ba góc nhọn, AB<AC. Kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE. So sánh độ dài HB và HC.
Bài 6: Cho tam giác ABC có AB<AC. Tia phân giác của góc B và C cắt nhau tại I. Từ I vẽ IH vuông góc với BC. So sánh độ dài HB và HC.
Bài 5: Cho tam giác ABC có ba góc nhọn, AB<AC. Kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE. So sánh độ dài HB và HC.
Bài 6: Cho tam giác ABC có AB<AC. Tia phân giác của góc B và C cắt nhau tại I. Từ I vẽ IH vuông góc với BC. So sánh độ dài HB và HC.
Bạn viết đề bài cho đầy đủ chứ -.-
~ Vào thông kê của bạn ý là thấy đề ~
Bài 5:
Bài làm
Xét tam giác ABC có:
AB < AC (gt)
=> \(\widehat{ABC}>\widehat{ACB}\)( Quan hệ giữa góc và cạnh đối diện ) (1)
Xét tam giác EBC vuông ở E có:
\(\widehat{ABC}+\widehat{ECB}=90^0\) (2)
Xét tam giác DBC vuông ở D có:
\(\widehat{ACB}+\widehat{DBC}=90^0\) (3)
Từ (1) , (2) và (3) => \(\widehat{ECB}< \widehat{DBC}\)
Xét tam giác HBC có:
\(\widehat{ECB}< \widehat{DBC}\) ( theo quan hệ giữa góc và cạnh đối diện có )
BH < HC
Vậy BH < HC
Bài 6
Bài làm:
Xét tam giác ABC có:
AB < AC ( gt )
\(\widehat{ABC}>\widehat{ACB}\)( quan hệ giữa góc và cạnh đối diện ) (1)
Mà BI là phân giác góc ABC
=> \(\frac{1}{2}\widehat{ABC}=\widehat{ABI}=\widehat{IBC}\) (2)
Và CI là phân giác góc ACB
=> \(\frac{1}{2}\widehat{ACB}=\widehat{ACI}=\widehat{ICB}\) (3)
Từ (1), (2) và (3) => \(\widehat{ABI}=\widehat{IBC}>\widehat{ACI}=\widehat{ICB}\) (4)
Xét tam giác IHB vuông ở H có:
\(\widehat{IBC}+\widehat{BIH}=90^0\) (5)
Xét tam giác IHC vuông ở H có:
\(\widehat{ICB}+\widehat{CIH}=90^0\) (6)
Từ (4), (5) và (6) => \(\widehat{BIH}< \widehat{CIH}\)
Xét tam giác IBC có:
\(\widehat{BIH}< \widehat{CIH}\)( Theo quan hệ giữa góc đối và cạnh đối diện có: )
BH < HC
Vậy BH < HC
# Học tốt #
Cho tam giác ABC có AB=AC. Vẽ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi I là giao điểm của BD và CE. Chứng minh rằng:
a) BD = CE
b) EI = DI
c) Ba điểm A, I, H thẳng hàng ( với H là trung điểm của BC)
(g là góc)
Xét tg ABC,có:
AB=AC
=>tg ABC cân tại A
=>gABC = gACB
a)Xét tg BEC và tg CDB ,có:
BC:chung
gBEC =gCDB =90*(vì EC vuông gAB,BD vuông gAC)
gEBC = gDCB(cmt)
=>tg BEC = tg CDB(ch-gn)
=>BD=EC
b)Theo phần a,ta có:tg BEC = tg CDB(ch-gn)
=>gDBC=gECB(2 góc tương ứng)
=>tg BIC cân tại I
=>BI=CI
mà EI+IC=EC và DI+BI=BD(vì I là gđ của BD và EC) và BD=EC(theo phần a)
=>EI = DI
c)Xét tg ABC ,có:
AB=AC(gt)
BI=CI(cmt)
BH=CH(vì H là trung điểm của BC)
=>Ba điểm A, I, H thẳng hàng
(g là góc)
Xét tg ABC,có:
AB=AC
=>tg ABC cân tại A
=>gABC = gACB
a)Xét tg BEC và tg CDB ,có:
BC:chung
gBEC =gCDB =90*(vì EC vuông gAB,BD vuông gAC)
gEBC = gDCB(cmt)
=>tg BEC = tg CDB(ch-gn)
=>BD=EC
b)Theo phần a,ta có:tg BEC = tg CDB(ch-gn)
=>gDBC=gECB(2 góc tương ứng)
=>tg BIC cân tại I
=>BI=CI
mà EI+IC=EC và DI+BI=BD(vì I là gđ của BD và EC) và BD=EC(theo phần a)
=>EI = DI
c)Xét tg ABC ,có:
AB=AC(gt)
BI=CI(cmt)
BH=CH(vì H là trung điểm của BC)
=>Ba điểm A, I, H thẳng hàng
bài 1 : Cho tam giác ABC nhọn , góc C = 45 độ . Vẽ BD vuông AC , CE vuông AB GỌi H là giao điểm của BD và CE
CMR ; AB = HC
Cho tam giác ABC có AB = AC. Kẻ BD vuông góc với AC, CE vuông góc với AB (D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh rằng BD // CE
Cho tam giác ABC có AB = AC, kẻ BD vuông góc với AC, CE vuông góc với AB (D thuộc AC, E thuộc AB)
a) Chứng minh: BD=CE
b) Gọi O là giao điểm của BD và CE. Chứng minh tam giác OBE = tam giác OCD
c) Chứng minh AO là tia phân giác của góc BAC và AO vuông góc với BC
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
Cho tam giác ABC , có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB (D thuộc AC; E thuộc AB); gọi Ở là giao điểm của BD và CE. Chứng minh:
a, BD=CE
b, tam giác OEB=tam giác ODC
c, AO là tia phân giác của BAC
d,H là trung điểm của BC. Chứng minh A,O,H thẳng hàng.
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔADB=ΔAEC
=>BD=CE
b: ΔABD=ΔACE
=>\(\widehat{ABD}=\widehat{ACE}\)
=>\(\widehat{OBE}=\widehat{OCD}\)
ΔABD=ΔACE
=>AD=AE
AE+EB=AB
AD+DC=AC
mà AE=AD và AB=AC
nên EB=DC
Xét ΔOEB vuông tại E và ΔODC vuông tại D có
EB=DC
\(\widehat{OBE}=\widehat{OCD}\)
Do đó: ΔOEB=ΔODC
c: ΔOEB=ΔODC
=>OB=OC
Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
Do đó: ΔABO=ΔACO
=>\(\widehat{BAO}=\widehat{CAO}\)
=>AO là phân giác của góc BAC
d: Ta có: ΔABC cân tại A
mà AH làđường trung tuyến
nên AH là phân giác của góc BAC
mà AO là phân giác của góc BAC(cmt)
và AO,AH có điểm chung là A
nên A,O,H thẳng hàng