Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trần thị ngọc trâm
Xem chi tiết
huong nguyen
Xem chi tiết
Phương Linh
Xem chi tiết
Tạ Duy Phương
20 tháng 10 2015 lúc 22:30

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1

 

8/11-22-Đặng Bảo Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 1 2024 lúc 22:28

Câu 2:

ĐKXĐ: x<>0

\(B=\dfrac{-x^2-x-1}{x^2}\)

\(=-1-\dfrac{1}{x}-\dfrac{1}{x^2}\)

\(=-\left(\dfrac{1}{x^2}+\dfrac{1}{x}+1\right)\)

\(=-\left(\dfrac{1}{x^2}+2\cdot\dfrac{1}{x}\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)

\(=-\left(\dfrac{1}{x}+\dfrac{1}{2}\right)^2-\dfrac{3}{4}< =-\dfrac{3}{4}\forall x< >0\)

Dấu '=' xảy ra khi 1/x+1/2=0

=>1/x=-1/2

=>x=-2

Đinh Đức Thành
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 3 2022 lúc 23:19

\(P=\dfrac{x^2-2x-2}{x^2+x+1}=\dfrac{2\left(x^2+x+1\right)-\left(x^2+4x+4\right)}{x^2+x+1}=2-\dfrac{\left(x+2\right)^2}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le2\)

\(P_{max}=2\) khi \(x=-2\)

\(P=\dfrac{x^2-2x-2}{x^2+x+1}=\dfrac{-2\left(x^2+x+1\right)+3x^2}{x^2+x+1}=-2+\dfrac{3x^2}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\ge-2\)

\(P_{min}=-2\) khi \(x=0\)

Cù Thanh	Bình
2 tháng 3 2022 lúc 7:17

Dự đoán:  $Px^2+Px +P-x^2+2x+2=0\\\to x^2(P-1) +x(P+2)+(P+2)=0$ $\Delta =(P+2)^2-4(P-1)(P+2)=(P+2)(P+2-4P+4)=(P+2)(6-3P)\ge 0$ giải BPT Ta được: $-2\le P \le 2$ $\to P_{min}=-2,P_{max}=2$

 

Lê thị đũy
Xem chi tiết
Ashshin HTN
16 tháng 9 2018 lúc 21:50

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

❊ Linh ♁ Cute ღ
16 tháng 9 2018 lúc 21:52

A = |x-7| + |x-5| = |7-x| + |x-5| ≥ |7-x + x-5| = 2 

minA = 2 
đạt khi 7-x và x-5 cùng dấu <=> (7-x)(x-5) ≥ 0 <=> 5 ≤ x ≤ 7 

B = (2x-1)² - 3|2x-1| + 2 = |2x-1|² - 2.|2x-1|.(3/2) + 9/4 + 2 - 9/4 

B = (|2x-1| - 3/2)² - 1/4 ≥ -1/4 

minB = -1/4 
đạt khi: |2x-1| = 3/2 <=> 2x-1 = 3/2 hoặc 2x-1 = -3/2 <=> x = 5/4 hoặc x = -1/4 

C = |x² + x + 1| + |x² + x -12| = |x² + x + 1| + |12 - x² - x | ≥ 

≥ |x² + x + 1 + 12 - x² - x| = |13| = 13 

minC = 13 

đạt khi (x² + x +1) và (12 - x² - x) cùng dấu 
<=> (x²+x+1)(12-x²-x) ≥ 0 <=> -1 ≤ x²+x ≤ 12 <=> 
{x² + x + 1 ≥ 0 
{x² + x -12 ≤ 0 
<=> 
(x + 4)(x - 3) ≤ 0 <=> -4 ≤ x ≤ 3 
tóm lại: 
minC = 13 đạt khi -4 ≤ x ≤ 3 

học tốt

Nguyễn Hồng Hạnh
Xem chi tiết
Kaya Renger
7 tháng 5 2018 lúc 18:10

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

luong quang tuan
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 8 2021 lúc 11:07

Ta có: \(D=\left(2x-1\right)^2+\left(x+2\right)^2+12\)

\(=4x^2-4x+1+x^2+4x+4+12\)

\(=5x^2+17\ge17\forall x\)

Dấu '=' xảy ra khi x=0

Nguyễn Huy Tú
6 tháng 8 2021 lúc 11:07

\(D=\left(2x-1\right)^2+\left(x+2\right)^2+12\)

\(=4x^2-4x+1+x^2+4x+4+12=5x^2+17\ge17\)

Dấu ''='' xảy ra khi x = 0 

Vậy GTNN D bằng 17 tại x = 0 

marie
Xem chi tiết
luuthianhhuyen
18 tháng 11 2018 lúc 11:58

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)