Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Girl
Xem chi tiết
๖²⁴ʱんuリ イú❄✎﹏
6 tháng 11 2019 lúc 21:37

\(a,12⋮x+1\)

\(\Leftrightarrow x+1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

Đến đây tự lập bảng xét giá trị nha 

hc tốt ( mai rảnh lm nốt cho ==)

Khách vãng lai đã xóa
>>gノムレノ刀ん<<
6 tháng 11 2019 lúc 21:42

cậu còn làm thiếu kìa . mà cậu làm cụ thể hơn ik .

Khách vãng lai đã xóa
๖²⁴ʱんuリ イú❄✎﹏
7 tháng 11 2019 lúc 12:05

== nghĩa là đến đây chỉ cần lập bảng xét giá trị nữa thôi 

\(b,\left(x+3\right)⋮\left(x+2\right)\)

\(\Leftrightarrow x+2+1⋮x+2\)

\(\Leftrightarrow x+2⋮x+2\)

\(\Leftrightarrow1⋮x+2\)

\(\Leftrightarrow x+2\inƯ\left(1\right)=\left\{\pm1\right\}\)

Lập bảng xét giá trị 

x+2-11
x-3-1

c, Kham khảo 

Câu hỏi của Hoàng Ngọc Mai - Toán lớp 6 - Học toán với OnlineMath ( bài chỉ mang tính chất tương tự )

p/s : vào thống kê 

hc tốt 

Khách vãng lai đã xóa
Phạm Khánh Hà
Xem chi tiết
chudung133
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 10 2021 lúc 23:14

Bài 1:

Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n^3+2n^2-2n^3-2n^2+6n\)

\(=6n⋮6\)

Lấp La Lấp Lánh
2 tháng 10 2021 lúc 23:17

1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)

2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)

Yotsuku Mika
Xem chi tiết
Ngô Minh Tú
Xem chi tiết
Nanohana Ami
Xem chi tiết
╰Nguyễn Trí Nghĩa (team...
29 tháng 1 2020 lúc 21:02

MK làm phần c) còn các phần khác bn tự làm nha:

6n+4 \(⋮\)2n+1

+)Ta có:2n+1\(⋮\)2n+1

           =>3.(2n+1)\(⋮\)2n+1

           =>6n+3\(⋮\)2n+1(1)

+)Theo bài ta có:6n+4\(⋮\)2n+1(2)

 +)Từ(1) và (2) suy ra (6n+4)-(6n+3)\(⋮\)2n+1

                                =>6n+4-6n-3\(⋮\)2n+1

                                =>1\(⋮\)2n+1

                               =>2n+1\(\in\)Ư(1)=1

                               =>2n+1=1

    +)2n+1=1

      2n    =1-1

      2n   =0

      n     =0:2

     n      =0\(\in\)Z

Vậy n=0

Chúc bn học tốt

Khách vãng lai đã xóa
Trần Công Mạnh
29 tháng 1 2020 lúc 21:21

Bài giải

a) Ta có n + 5 \(⋮\)n - 1   (n \(\inℤ\))

=> n - 1 + 6 \(⋮\)n - 1

Vì n - 1 \(⋮\)n - 1

Nên 6 \(⋮\)n - 1

Tự làm tiếp.

b) Ta có 2n - 4 \(⋮\)n + 2

=> 2(n + 2) - 8 \(⋮\)n + 2

Vì 2(n + 2) \(⋮\)n + 2

Nên 8 \(⋮\)n + 2

Tự làm tiếp.

c) Ta có 6n + 4 \(⋮\)2n + 1

=> 6n + 4 - 3(2n + 1) \(⋮\)2n + 1

=> 6n + 4 - (6n + 3) \(⋮\)2n + 1

=> 1 \(⋮\)2n + 1

Tự làm tiếp

d) Ta có 3 - 2n \(⋮\)n + 1

=> -2n + 3 \(⋮\)n + 1

=> -2n - 2 + 5 \(⋮\)n + 1

=> -2(n + 1) + 5 \(⋮\)n + 1 (-2n - 2 + 5 = -2n + (-2).1 + 5 = -2(n + 1) + 5)

Vì -2(n + 1) \(⋮\)n + 1

Nên 5 \(⋮\)n + 1

Tự làm tiếp.

Khách vãng lai đã xóa
Nguyễn Văn Việt
Xem chi tiết
nguyen thi dieu linh
Xem chi tiết
Võ Yến My
Xem chi tiết
Nguyễn Anh
15 tháng 12 2018 lúc 22:33

1. Xét n=1
VT = 12 = 1
VP = \(\dfrac{n.\left(4n^2-1\right)}{3}=\dfrac{1.\left(4.1-1\right)}{3}=1\)
=> VT = VP
=> Mệnh đề đúng.
+) Giả sử với n = k , mệnh đề đúng hay: \(1^2+3^2+5^2+...+\left(2k-1\right)^2=\dfrac{k.\left(4k^2-1\right)}{3}\)+) Ta phải chứng minh với n = k + 1, mệnh đề cũng đúng, tức là: \(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{\left(k+1\right).\left(4.\left(k+1\right)^2-1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(1\right)\)
+) Thật vậy, với n = k + 1, theo giả thiết quy nạp, ta có:
\(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{k.\left(4.k^2-1\right)}{3}+\left(2k+1\right)^2\\ =\dfrac{k.\left(4k^2-1\right)+3.\left(2k+1\right)^2}{3}=\dfrac{4k^3-k+12k^2+12k+3}{3}\\ =\dfrac{\left(k+1\right)\left(2k+3\right)\left(2k+1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(2\right)\)+) Từ (1) và (2) => Điều phải chứng minh

Nguyễn Anh
15 tháng 12 2018 lúc 23:27

2. +) Xét n = 1
\(< =>4^1+15.1-1=18⋮9\)
=> với n=1 , mệnh đề đúng.
+) Giả sử với n=k , mệnh đề đúng, tức là: \(4^k+15k-1⋮9\)
+) Ta phải chứng minh với n = k + 1 mệnh đề cũng đúng, tức là: \(4^{k+1}+15\left(k+1\right)-1⋮9\)
Thật vậy: với n = k + 1, theo giả thiết quy nạp, ta có:
\(4^{k+1}+15\left(k+1\right)-1=4.4^k+15k+15-1\\ =4.4^k+4.15k-4-3.15k+18=4.\left(4^k+15k-1\right)-\left(45k-18\right)⋮9\)=> Điều phải chứng minh.