x^(4n+2)+2*x^(2n+1) chia hết cho (x+1)^2 với mọi n thuộc N
Ai giúp vs mk sắp phải nộp r!!
tìm x thuộc N biết :
a; 12 chia hết cho x + 1
b; ( x +3 ) chia hết cho ( x+2)
c; (2. x +7) chia hết cho ( x+3)
giúp mk vs mai mk phải nộp bài rôi
CẨM ƠN MỌI NGƯỜI!!!!!
\(a,12⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Đến đây tự lập bảng xét giá trị nha
hc tốt ( mai rảnh lm nốt cho ==)
cậu còn làm thiếu kìa . mà cậu làm cụ thể hơn ik .
== nghĩa là đến đây chỉ cần lập bảng xét giá trị nữa thôi
\(b,\left(x+3\right)⋮\left(x+2\right)\)
\(\Leftrightarrow x+2+1⋮x+2\)
\(\Leftrightarrow x+2⋮x+2\)
\(\Leftrightarrow1⋮x+2\)
\(\Leftrightarrow x+2\inƯ\left(1\right)=\left\{\pm1\right\}\)
Lập bảng xét giá trị
x+2 | -1 | 1 |
x | -3 | -1 |
c, Kham khảo
Câu hỏi của Hoàng Ngọc Mai - Toán lớp 6 - Học toán với OnlineMath ( bài chỉ mang tính chất tương tự )
p/s : vào thống kê
hc tốt
Bài 1 : Tìm n thuộc Z , biết :
a, n^2 - 5n chia hết cho 25
b, 6n^2 - 3n chia hết cho 4
c, n^2 - 3 chia hết cho 7
d, 4n^2 -16 chia hết cho 3
Mọi người giúp em với ạ , ngày mai em phải nộp r
1.chứng min 2n^2 .(n+1)-2n (n^2 +n-3) chia hết cho 6 vs mọi số nguyên n
2.chứng minh n(3-2n)-(n-1) (1+4n)-1 chia hết cho 6 với mọi số nguyên n
giúp mk vs mk cần gấp TT
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
vs mọi n thuộc N, c/m (n+45)(4n^2-1)chia hết cho 3
Giúp mình đi! 2/6 nộp r
chứng minh rằng với mọi số tự n:
a) (x+1)^2n - x^2n - 2x - 1 chia hết cho x(x+1)(2x+1)
b) x^4n+2 +2x^n+1 + 1 chia hết cho (x+1)^2
Tìm số nguyên n biết :
a) n+5 chia hết cho n-1
b) 2n-4 chia hết cho n+2
c) 6n+4 chia hết cho 2n+1
d) 3-2n chia hết cho n+1
Mọi người ơi, giúp mk đi, mk cần rất gấp bài này. Mai đi học phải nộp r.
Cảm ơn trước nhé.
MK làm phần c) còn các phần khác bn tự làm nha:
6n+4 \(⋮\)2n+1
+)Ta có:2n+1\(⋮\)2n+1
=>3.(2n+1)\(⋮\)2n+1
=>6n+3\(⋮\)2n+1(1)
+)Theo bài ta có:6n+4\(⋮\)2n+1(2)
+)Từ(1) và (2) suy ra (6n+4)-(6n+3)\(⋮\)2n+1
=>6n+4-6n-3\(⋮\)2n+1
=>1\(⋮\)2n+1
=>2n+1\(\in\)Ư(1)=1
=>2n+1=1
+)2n+1=1
2n =1-1
2n =0
n =0:2
n =0\(\in\)Z
Vậy n=0
Chúc bn học tốt
Bài giải
a) Ta có n + 5 \(⋮\)n - 1 (n \(\inℤ\))
=> n - 1 + 6 \(⋮\)n - 1
Vì n - 1 \(⋮\)n - 1
Nên 6 \(⋮\)n - 1
Tự làm tiếp.
b) Ta có 2n - 4 \(⋮\)n + 2
=> 2(n + 2) - 8 \(⋮\)n + 2
Vì 2(n + 2) \(⋮\)n + 2
Nên 8 \(⋮\)n + 2
Tự làm tiếp.
c) Ta có 6n + 4 \(⋮\)2n + 1
=> 6n + 4 - 3(2n + 1) \(⋮\)2n + 1
=> 6n + 4 - (6n + 3) \(⋮\)2n + 1
=> 1 \(⋮\)2n + 1
Tự làm tiếp
d) Ta có 3 - 2n \(⋮\)n + 1
=> -2n + 3 \(⋮\)n + 1
=> -2n - 2 + 5 \(⋮\)n + 1
=> -2(n + 1) + 5 \(⋮\)n + 1 (-2n - 2 + 5 = -2n + (-2).1 + 5 = -2(n + 1) + 5)
Vì -2(n + 1) \(⋮\)n + 1
Nên 5 \(⋮\)n + 1
Tự làm tiếp.
x^(4n+2)+2*x^(2n+1) chia hết cho (x+1)^2 với mọi n thuộc N
bài 1: tìm n thuộc Z biết n2+n-17 là B(n+5)
bài 2:tìm n thuộc Z để 8n-9/2n+5 nguyên
bài 3:cmr : vs mọi số nguyên dương n thì :A=n3+5n chia hết cho 6
bài 4:tìm n thuộc Z sao cho: a) 2n+5 chia hết cho 2n+2/ b)n2+3n -5 là B(n-2)
giúp mk vs nhé các bn , mk cần gấp lắm lắm...ai làm nhanh+ddung mk tick cho, mai mk phải nộp rùi. ghi rõ cách giải và làm đầy đủ nhé, cảm ơn nhìu...
Giúp e vs ạ😭😭😭
1. CMR: 1^2+3^2+5^2+...+(2n-1)^2= (n*(4n^2-1))/3 (vs mọi n thuộc Z+)
2. CMR: 4^n+15*n-1 chia hết cho 9 (vs mọi n thuộc Z+)
3. CMR: n^3+11*n chia hết cho 6 (vs mọi n thuộc Z+)
1. Xét n=1
VT = 12 = 1
VP = \(\dfrac{n.\left(4n^2-1\right)}{3}=\dfrac{1.\left(4.1-1\right)}{3}=1\)
=> VT = VP
=> Mệnh đề đúng.
+) Giả sử với n = k , mệnh đề đúng hay: \(1^2+3^2+5^2+...+\left(2k-1\right)^2=\dfrac{k.\left(4k^2-1\right)}{3}\)+) Ta phải chứng minh với n = k + 1, mệnh đề cũng đúng, tức là: \(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{\left(k+1\right).\left(4.\left(k+1\right)^2-1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(1\right)\)
+) Thật vậy, với n = k + 1, theo giả thiết quy nạp, ta có:
\(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{k.\left(4.k^2-1\right)}{3}+\left(2k+1\right)^2\\ =\dfrac{k.\left(4k^2-1\right)+3.\left(2k+1\right)^2}{3}=\dfrac{4k^3-k+12k^2+12k+3}{3}\\ =\dfrac{\left(k+1\right)\left(2k+3\right)\left(2k+1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(2\right)\)+) Từ (1) và (2) => Điều phải chứng minh
2. +) Xét n = 1
\(< =>4^1+15.1-1=18⋮9\)
=> với n=1 , mệnh đề đúng.
+) Giả sử với n=k , mệnh đề đúng, tức là: \(4^k+15k-1⋮9\)
+) Ta phải chứng minh với n = k + 1 mệnh đề cũng đúng, tức là: \(4^{k+1}+15\left(k+1\right)-1⋮9\)
Thật vậy: với n = k + 1, theo giả thiết quy nạp, ta có:
\(4^{k+1}+15\left(k+1\right)-1=4.4^k+15k+15-1\\ =4.4^k+4.15k-4-3.15k+18=4.\left(4^k+15k-1\right)-\left(45k-18\right)⋮9\)=> Điều phải chứng minh.