Cho a,b,m thuộc N*
Hãy so sánh \(\frac{a+m}{b+m}\)với \(\frac{a}{b}\)
cho a ,b,m thuộc N*
hãy so sánh \(\frac{a+m}{b+m}\)với \(\frac{a}{b}\)
ta xét 3 trường hợp\(\frac{a}{b}\)= 1 ; \(\frac{a}{b}\)< 1 ; \(\frac{a}{b}\)> 1
+ trương hợp \(\frac{a}{b}\)= 1 nên a = b thì \(\frac{a+b}{b+m}\)= \(\frac{a}{b}\)= 1
+ trường hợp \(\frac{a}{b}\)< 1 nên a < b nên a + b < b + m
còn lại tự làm nhé
Giải
Xét 3 tường hợp : \(\frac{a}{b}=1;\frac{a}{b}>1;\frac{a}{b}< 1\)
\(TH1:\frac{a}{b}=1\Leftrightarrow a=b\)
\(\Rightarrow\frac{a+m}{b+m}=\frac{b\left(a=b\right)+m}{b+m}=1\)
\(\Rightarrow\frac{a+m}{b+m}=\frac{a}{b}\)
\(TH2:\frac{a}{b}>1\Leftrightarrow a>b\)
Ta có : \(b\left(a+m\right)< a\left(b+m\right)\) ( tích chéo )
\(\Leftrightarrow ab+bm< ab+am\)
\(\Leftrightarrow bm< am\)( luôn đúng )
\(\Rightarrow\frac{a+m}{b+m}< \frac{a}{b}\)
\(TH3:\frac{a}{b}< 1\Leftrightarrow a< b\)
Ta có : \(b\left(a+m\right)>a\left(b+m\right)\) ( tích chéo )
\(\Leftrightarrow ab+bm>ab+am\)
\(\Leftrightarrow bm>am\)( luôn đúng )
\\(\Rightarrow\frac{a+m}{b+m}>\frac{a}{b}\)
Cho a , m ,n thuộc N sao , Hãy So sánh :
\(A=\frac{10}{a^m}+\frac{10}{a^n}\&B=\frac{11}{a^m}+\frac{9}{a^n}\)
Cho a,b,m thuộc N*
So sánh \(\frac{a+m}{b+m}\) với \(\frac{a}{b}\)
TH1 : a<b
\(\Rightarrow am< bm\)
\(\Rightarrow ab+am< ab+bm\Rightarrow a\left(b+m\right)< b\left(a+m\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\)
TH2 : a=b
\(\Rightarrow am=bm\)
\(\Rightarrow ab+am=ab+bm\Rightarrow a\left(b+m\right)=b\left(a+m\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a+m}{b+m}\)
TH1 : a>b
\(\Rightarrow am>bm\)
\(\Rightarrow ab+am>ab+bm\Rightarrow a\left(b+m\right)>b\left(a+m\right)\)
\(\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\)
Vậy ... ( có 3 trường hợp )
Cho a,b,m thuộc N*
So sánh \(\frac{a+m}{b+m}\) với \(\frac{a}{b}\)
cho a,b,m thuộc số tự nhiện khác 0
hãy so sánh \(\frac{a+m}{b+m}vs\frac{a}{b}\)
cho a,b,m thuộc N* . So sánh \(\frac{a+m}{b+m}\) với \(\frac{a}{b}\)
Cho a,b,m thuộc N*. Hãy so sánh a+m/b+m với a/b
Cho các số hữu tỉ \(x=\frac{a}{b};y=\frac{c}{d}\) và \(z=\frac{m}{n}\). Biết a.d-b.c=1; c.n-d.m=1;b, d, n >0
a) Hãy so sánh các số x, y, z
b) So sánh y với t biết \(t=\frac{a+m}{b+m}\) với b+n\(\ne\)0
Cho a, b, m thuộc N*. Hãy so sánh a + m b + m với a b
a + m b + m = a + m . b b + m . b = a b + m b b + m . b ; a b = a b + m b + m . b = a b + a m b + m . b
Do a > b ⇒ a m > b m ⇒ a b + m b > a b + a m ⇒ a + m b + m > a b