cho đoạn thẳng AB có trung điểm O.Trên cùng 1 nửa mặt phẳng bờ AB kẻ 2 tia Ax,By cùng vuông góc với AB rồi lấy điểm C bất kì thuộc tia Ax vẽ D thuộc tia By sao cho góc COD =90 độ.Chứng minh
a) AC.BD=AB2/2
c) tam giác BOD đồng dạng với tam giác COD
Cho đoạn thẳng AB và điểm M là trung điểm của AB. Trên cùng một nửa mặt phẳng bờ AB vẽ các tia Ax, By vuông góc với AB. Lấy điểm C , D lần lượt trên Ax , By sao cho góc CMD=90 độ .tia CM cắt tia đối của tia By tại E . kẻ MH vuông góc CD (H thuộc CD )
CMR
a) tam giác AMC= tam giác BME , tam giác CMD= tam giác EMD
b) CD=AC+BD
c) M là giao điểm của các đường trung trực của doạn thẳng AH, HB
giúp mình với mn mình cần gấp .
cho đoạn AB, O là trung điểm AB. trên cùng một nửa mặt phẳng bờ AB kẻ 2 tia Ax; By cùng vuông góc với AB. lấy 2 điểm C;D (C thuộc Ax); (D thuộc By) sao cho AC.BD=AB^2/4.
a/chứng minh tam giác COD vuông tại O.
b/ tam giác BOD đồng dạng vs tam giác COD
cho đoạn thẳng AB.Trên cùng một nửa mặt phẳng bờ AB,kẻ hai tia Ax,By vuông góc với AB.Trên tia Ax và By lấy tương ứng hai điểm C và D sao cho góc COD=90( O là trung điểm đoạn AB) .Chứng minh rằng
a,CD= AC+BD
b,4(AC.BD)=AB^2
a: Kẻ CO cắt BD tại E
Xét ΔOAC vuông tại A và ΔOBE vuông tại B có
OA=OB
góc COA=góc EOB
Do đó: ΔOAC=ΔOBE
=>OC=OE
Xét ΔDCE có
DO vừa là đường cao, vừalà trung tuyến
nên ΔDEC cân tại D
=>góc DCE=góc DEC=góc CAO
=>CO là phân giác của góc DCA
Kẻ CH vuông góc với CD
Xét ΔCAO vuông tại A và ΔCHO vuông tại H có
CO chung
góc ACO=góc HCO
DO đó: ΔCAO=ΔCHO
=>OA=OH=OB và CH=CA
Xét ΔOHD vuông tại H và ΔOBD vuông tại B có
OD chung
OH=OB
Do đó: ΔOHD=ΔOBD
=>DH=DB
=>AC+BD=CD
b: AC*BD=CH*HD=OH^2=R^2=AB^2/4
=>4*AC*BD=AB^2
Cho đoạn thẳng AB = 7cm. Lấy điểm C thuộc đoạn thẳng AB sao cho AC = 2cm. Trên cùng một nửa mặt phẳng bờ AB vẽ hai tia Ax và By cùng vuông góc với AB. Lấy điểm D thuộc tia Ax, điểm E thuộc tia By sao cho: AD = 10 cm, BE = 1 cm
a) Tính độ dài các đoạn thẳng DC, CE
b) Chứng minh rằng: DC ⊥ CE.
mik cần gấp
Cho đoạn thẳng AB và trung điểm O. Trên cùng 1 nửa mặt phẳng bờ AB kẻ các tia Ax, By vuông góc với AB. Trên các tia Ax, By lấy theo thứ tự 2 điểm C, D sao cho \(\widehat{COD}\) = 90o, OH ⫠ CD
Cho đoạn thẳng AB và trung điểm O. Trên cùng 1 nửa mặt phẳng bờ AB kẻ các tia Ax, By vuông góc với AB. Trên các tia Ax, By lấy theo thứ tự 2 điểm C, D sao cho COD = 90o, OH ⫠ CD
a, CMR H thuộc đtron tâm O đkinh AB
b, Xác định vtri tương đối của đường thẳng CD với đtron trên
a: Gọi giao điểm của CO với BD là K
Xét ΔOAC vuông tại A và ΔOBK vuông tại B có
OA=OB
\(\widehat{AOC}=\widehat{BOK}\)
Do đó: ΔOAC=ΔOBK
=>OC=OK và \(\widehat{ACO}=\widehat{BKO}\)
=>\(\widehat{ACO}=\widehat{DKC}\)(1)
OC=OK
K,O,C thẳng hàng
Do đó: O là trung điểm của KC
Xét ΔDCK có
DO là đường cao
DO là đường trung tuyến
Do đó: ΔDCK cân tại D
=>\(\widehat{DCK}=\widehat{DKC}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{ACO}=\widehat{HCO}\)
Xét ΔCAO vuông tại A và ΔCHO vuông tại H có
CO chung
\(\widehat{ACO}=\widehat{HCO}\)
Do đó: ΔCAO=ΔCHO
=>OA=OH=R
=>H thuộc (O)
b: Xét (O) có
OH là bán kính
CD\(\perp\)OH tại H
Do đó: CD là tiếp tuyến của (O)
cho đoạn thẳng ab trên cùng 1 nửa mặt phẳng có bờ là đường thẳng ab vẽ hai tia ax và by lần lượt vuông góc với ab tại a và b gọi trung điểm của ab là o trên ax lấy điểm c trên by lấy điểm d sao cho góc COD bằng 90 độ
Cho đoạn thẳng AB trung điểm O. trên cùng nửa mặt phẳng bờ AB vẽ Ax, By vuông góc với AB. Lấy C,D lần lượt thuộc tia Ax, By sao cho \(\widehat{COD}=90^o\). Tìm vị trí C, D để DO, CO đạt GTNN
Cho đoạn thẳng AB. Trên cùng 1 nửa mặt phẳng bờ AB vẽ 2 tia Ax và By cùng vuông góc với AB. Trên 2 tia Ax và By lần lượt lấy các điểm C và D sao cho AC=1/2BD. Vẽ BE vuông góc với AD(E thuộc AD). F là trung điểm của ED. CMR: CF vuông góc với BF