tìm 2 số chính phương có hiệu là 97
Tìm n € N để B=n^2+7n+97 là số chính phương
Tìm n € N để A=n2 +7n+97 là số chính phương
https://olm.vn/hoi-dap/detail/216909810577.html tham khảo
Tìm các số chính phương có hiệu là 2017
Tìm 1 số có 2 chữ số biết hiệu bình phương của nó và số viết theo thứ tự ngược lại là số chính phương.
Cách 1: Tách số hạng thứ hai
x2 – 6x + 8 = x2 – 2x – 4x + 8
= x(x – 2) – 4( x – 2)
= (x – )(x – 4).
Cách 2: Tách số hạng thứ 3
x2 - 6x + 8 = x2 – 6x + 9 – 1
= (x – 3)2 – 1 = ( x – 3 – 1)(x – 3 + 1)
= (x – 4)( x – 2).
Cách 3: x2 – 6x + 8 = x2 – 4 – 6x + 12
= ( x – 2)(x + 2) – 6(x – 2)
= (x – 2)(x – 4)
7. Cho A = 4^16.5^25. Tim số chữ số của A
8. Có bao nhiêu số có 2 chữ số ( 2 chữ số đều khác 0 ) sao cho tích của chúng là số chính phương
9. Tìm số chính phương có 4 chữ số biết nếu mỗi chữ số giảm đi 1 đơn vị thì được số mới cũng là số chính phương
10, Tìm số có 2 chữ số biết :
a, tổng của số đó và số viết theo thứ tự ngược lại là số chính phương ;
b, Hiệu bình phương của số đó và số viết theo thứ tự ngược lại là SCP
tìm số có 2 chữ số sao cho hiệu của số ấy và số viết theo thứ tự ngược lại là số chính phương
Gọi số đó là ab (a,b là chữ số; a khác 0)
Theo bài ra ta có:
ab-ba=n2 (Với nϵN)
⇒ a.10+b-b.10-a = n2
⇒ 9a-9b = n2
⇒ 9.(a-b)=n2
⇒ a-b=9 ⇒ a=9,b=0 (vì a,b đều bé hơn 10)
Vậy số cần tìm là 90
Bạn Quang còn thiếu các trường hợp \(a-b\in\left\{0;1;4\right\}\) nữa. Các số có 2 chữ số \(\overline{ab}\) \(\left(a>b\right)\) mà \(a-b\in\left\{0;1;4;9\right\}\) thì \(\overline{ab}-\overline{ba}\) luôn là số chính phương.
Tìm số tự nhiên có 2 chữ số biết hiệu các bình phương của số đó và số viết theo thứ tự ngược lại là một số chính phương.
1) Tìm một số có hai chữ số biết rằng hiệu bình phương của nó và số viết theo thứ tự ngược lại là một số chính phương
2) Tìm một số có hai chữ số biết rằng tổng của nó và số viết theo thứ tự ngược lại là số chính phương
Bài 1: Gọi số cần tìm là $\overline{ab}$ với $a,b$ là số tự nhiên có 1 chữ số, $a>0$
Theo bài ra ta có:
$\overline{ab}-\overline{ba}=10a+b-(10b+a)=9(a-b)$ là 1 scp.
Mà $9$ cũng là 1 scp nên để $9(a-b)$ là scp thì $a-b$ là scp.
$a,b$ là các số tự nhiên có 1 chữ số nên $a-b<10$
$\Rightarrow a-b\in\left\{0,1,4,9\right\}$
Nếu $a-b=0$ thì $a=b$. Ta có các số $11,22,33,44,55,....,99$ đều thỏa mãn.
Nếu $a-b=1$ thì $a=b+1$. Ta có các số $10, 21,32,43,54,65,76,87,98$ đều thỏa mãn.
Nếu $a-b=4$ thì $a=b+4$. Ta có các số $40, 51, 62, 73, 84, 95$ đều thỏa mãn
Nếu $a-b=9$ thì $a=b+9$. Ta có số $90$ thỏa mãn.
Bài 2: Gọi số cần tìm là $\overline{ab}$ với $a,b$ là số tự nhiên có 1 chữ số, $a>0$.
Theo bài ra ta có:
$\overline{ab}+\overline{ba}=10a+b+10b+a=11(a+b)$
Để tổng này là scp thì $a+b=11m^2$ với $m$ là số tự nhiên.
$\Rightarrow a+b\vdots 11$.
Mà $a,b$ là số tự nhiên có 1 chữ số nên $a+b< 20$
$\Rightarrow a+b=11$
$\Rightarrow (a,b)=(2,9), (3,8), (4,7), (5,6), (6,5), (7,4), (8,3), (9,2)$
Vậy số thỏa mãn là $29,38,47,56,65,74,83,92$
tìm số tự nhiên có 2 chữ số biết hiệu các bình phương của số đó và số và số viết theo thứ tự ngược lại là số chính phương
Số cần tìm là 21 vì:
21 viết theo thứ tự ngược lại là 12
mà 21 - 12 = 9 (9 là số chính phương)