cho\(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}\)tim gia tri cua bieu thuc \(A=\frac{a-b+c}{a+2b-c}\)
a, cho a<b c/minh 2a-3<2b-3
b, tim x sao cho gia tri cua bieu thuc
c, giai bat phuong trinh \(\frac{4x-5}{3}\)>\(\frac{7-x}{5}\)
a,Vì a<b nên suy ra 2a<2b. =>2a-3<2b-3
b,
c,\(\frac{20x-25}{15}>\frac{21-3x}{15}\)
<=>20x-25>21-3x
<=>23x>46
<=>x>2
1) Cho bieu thuc A=\(3+\frac{2}{x-1}\). Tinh gia tri cua bieu thuc A khi |2x-3|=1
2) Rut gon bieu thuc B=\(\frac{x}{x-1}\)-\(\frac{x-5}{x+1}\)-\(\frac{3-x}{1-x^2}\)
3) Tim cac gia tri nguyen cua x de bieu thuc \(\frac{B}{A}\)co gia tri nguyen duong
Cho a,b,c la cac so duong thoa man a+b+c=9.Tim gia tri nho nhat cua bieu thuc:
\(P=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+c^2+\frac{1}{c^2}\)
Ta có:\(P=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+c^2+\frac{1}{c^2}\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{9}{a^2+b^2+c^2}\)(bđt cauchy-schwarz)
\(P\ge\frac{a^2+b^2+c^2}{81}+\frac{9}{a^2+b^2+c^2}+\frac{80\left(a^2+b^2+c^2\right)}{81}\)
\(\Rightarrow P\ge\frac{2}{3}+\frac{80\left(a^2+b^2+c^2\right)}{81}\left(AM-GM\right)\)
Sử dụng đánh giá quen thuộc:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=27\)
\(\Rightarrow P\ge\frac{2}{3}+\frac{80\cdot27}{81}=\frac{82}{3}\)
"="<=>a=b=c=3
1) Cho bieu thuc: \(B=\left(\frac{\sqrt{x}}{\sqrt{x}+4}+\frac{4}{\sqrt{x}-4}\right):\frac{x+16}{\sqrt{x}+2}\left(x\ge0,x\ne16\right)\)
a) Cho bieu thuc A= \(\frac{\sqrt{x}+4}{\sqrt{x}+2}\) ; voi cac cua bieu thuc A va B da cho, hay tim cac gia tri cua x nguyen de gia tri cua bieu thuc B(A;-1) la so nguyen
cho bt \(A=\frac{x^2}{x^2-4}-\frac{x}{x+2}-\frac{2}{x-2}\)
a, tim x de ieu thuc A duoc xac dinh
b,rut gon bieu thuc A
c,tim gia tri nguyen cua x de A nguỵen
dkxd \(\hept{\begin{cases}\\\end{cases}}x-2=0;x+2=0\Leftrightarrow\hept{\begin{cases}\\\end{cases}x=+2;x=-2}\)
b/ \(\frac{x^2}{x^2-4}-\frac{x}{x+2}-\frac{2}{x-2}=\frac{x^2}{\left(x-2\right).\left(x+2\right)}-\frac{x.\left(x-2\right)}{\left(x+2\right).\left(x-2\right)}-\frac{2.\left(x+2\right)}{\left(x-2\right).\left(x+2\right)}\)
\(\frac{x^2-x^2-2x-2x+4}{\left(x-2\right).\left(x+2\right)}=\frac{4}{\left(x-2\right)\left(x+2\right)}\)
tới khúc này bí rồi ^^
a,ĐKXĐ của A là:\(x\ne+2;-2\)
b,\(\frac{x^2-x^2+2x-2x+4}{\left(x-2\right)\left(x+2\right)}\)=\(\frac{4}{\left(x+2\right)\left(x-2\right)}\)
c,Để A\(\in\)Z=> (x+2)(x-2)\(\inƯ\)(4) hay \(x^2-4\inƯ\)(4)=\(\left(4;-4;2;-2;1;-1\right)\)
Ta có bảng
\(x^2-4\) | x |
4 | \(\sqrt{8}\) |
-4 | 0 |
2 | \(\sqrt{6}\) |
-2 | \(\sqrt{2}\) |
1 | \(\sqrt{5}\) |
Vậy A\(Z=>x\in\)( 0;\(\sqrt{8};\sqrt{6};\sqrt{2};\sqrt{5}\))
\(\frac{-4}{\left(x+2\right)\left(x-2\right)}\) chơ bn
tinh gia tri cua bieu thuc A=\(\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\))\(\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)\). cho biet a+b+c=0
a, cho day ti so bang nhau : \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
tinh gia tri bieu thuc M: \(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
b,cho x= \(1+\frac{1}{2013}+\frac{1}{2013^2}+\frac{1}{2013^3}+....+\frac{1}{2013^{2013}}\)
tinh gia tri bieu thuc: S= (2012x+\(\frac{1}{2013^{2013}}\)) : 2013^2014
Tim gia tri cua bieu thuc A=\(3\left(\frac{2}{\sqrt{10}+5}+\frac{5}{\sqrt{10}-2}-\frac{7}{\sqrt{10}}\right)\)
1.cho bieu thuc A=\(\left(\frac{2}{x-2}+\frac{1}{x+2}\right):\frac{1}{x+2}\)
a.rút gọn bieu thuc A
b.tinh gia tri cua A tại x,biet x=1
2.tim x nguyen de gia tri cua bieu thuc A nguyen
a.\(A=\frac{3}{x+2}\)
b.\(A=\frac{x+3}{x-2}\)