Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
leonard
Xem chi tiết
On The Face
Xem chi tiết
Thanh Tùng DZ
2 tháng 7 2017 lúc 16:05

Ta dùng phương pháp phản chứng :

giả sử tồn tại hai số hữu tỉ x và y thỏa mãn đẳng thức\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)

suy ra : \(\frac{1}{x+y}=\frac{y+x}{xy}\Leftrightarrow\left(x+y\right)^2=xy\)

đẳng thức này không xảy ra vì \(\left(x+y\right)^2>0\), còn xy < 0 ( do x,y là hai số trái dấu , không đối nhau )

Vậy không tồn tại hai số hữu tỉ x và y trái dấu , không đối nhau thỏa mãn đề bài

Thái Viết Nam
Xem chi tiết
Nguyễn Tuấn Minh
6 tháng 9 2016 lúc 21:43

Giả sử tồn tại x,y trái dấu thỏa mãn

Khi đo ta có \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)

=> (x+y)2=xy 

Đẳng thức trên là vô lí vì (x+y)2\(\ge\)0

Còn xy nhỏ hơn 0 vì x,y trái dấu

Vậy ko có x,y trái dấu thỏa mãn đề bài

Dương Tuệ Nhiên
6 tháng 9 2016 lúc 21:43

1/x+y=1/x+1/y
1/x+y=x+y/xy( nhân vào như bài toán bình thường)
=>(x+y)(x+y)=1.xy
=>(x+y)2=xy
x, y cùng dấu thì phép tính mới dương

Ăn CHơi Éo sỢ mƯa rƠi
6 tháng 9 2016 lúc 21:49

\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)\(\Rightarrow\frac{1}{x+y}=\frac{x+y}{xy}\)

=> (x+y)2=xy

Vì (x+y)2 \(\ge\)0                                     (1)

Mà xy < 0( vì x,y trái dấu)                          (2)

Từ (1) và (2)=> Ko tồn tại x,y thỏa mãn đề bài

Katty Perry so Mad
Xem chi tiết
Clash Of Clans
Xem chi tiết
nguyenthitulinh
27 tháng 5 2015 lúc 9:54

ta dùng pháp phản chứng  

giả sử tồn tại 2 số hữu tỉ x và y  trái dấu thỏa mãn đẳng thức \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)

=> \(\frac{1}{x+y}=\frac{y+x}{xy}\) <=> \(\left(x+y\right)^2\) = xy

điều này vô lí vì \(\left(x+y\right)^2\) > 0 còn xy < 0( vì x và y trái dấu , không đối nhau)

vậy không tồn tại 2 số hữu tỉ x và y trái dấu , không đối nhau thảo mãn đề bài

 

giang ho dai ca
27 tháng 5 2015 lúc 9:49

\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}

=>\frac{1}{x+y}=\frac{y}{xy}+\frac{x}{xy}

=>\frac{1}{x+y}=\frac{x+y}{xy}

=>(x+y)^2 = xy

mà (x+y)^2 \geq 0

=>  xy \geq 0  => ko tồn tại x,y trái dấu

Đinh Tuấn Việt
27 tháng 5 2015 lúc 9:50

Ta dùng phương pháp chứng minh phản chứng:

Giả sử tồn tại hai số hữu tỉ x và y thỏa mãn đẳng thức \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)

Suy ra \(\frac{1}{x+y}=\frac{y+x}{xy}\) \(\Leftrightarrow xy=\left(x+y\right).\left(x+y\right)\) \(\Leftrightarrow\left(x+y\right)^2=xy\)

Vì x + y trái dấu \(\Rightarrow\) (x + y)2 > 0 nên xy > 0 nhưng x và y là hai số trái dấu, không đối nhau nên xy < 0. Do đó đẳng thức trên không xảy ra.

             Vậy không tồn tại hai số hữu tỉ x và y trái dấu, không đối nhau thỏa mãn đề bài.

Nguyễn Hoàng Uyên Minh
Xem chi tiết
Thanh Tùng DZ
9 tháng 7 2017 lúc 6:31

giả sử tồn tại hai số hữu tỉ thỏa mãn đẳng thức :

\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)

\(\Rightarrow\frac{1}{x+y}=\frac{y+x}{xy}\)

\(\Rightarrow xy=\left(x+y\right)\left(y+x\right)\)

\(\Rightarrow xy=\left(x+y\right)^2\)

Mà x và y là hai số trái dấu => ( x + y )2 > 0 còn xy < 0 

Vậy ...

Jenny phạm
Xem chi tiết
Kaori Miyazono
25 tháng 8 2018 lúc 10:02

Ta có \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)

\(\Rightarrow\frac{1}{x+y}=\frac{y+x}{xy}\)

\(\Rightarrow xy=\left(x+y\right)^2\)

Vì \(\left(x+y\right)^2\ge0\)nên \(xy\ge0\)'

Do đó không tồn tại x,y trái dấu và không đối nhau

Vậy ...

Ho Quoc NAm
25 tháng 8 2018 lúc 10:20

Ta dùng pháp phản chứng:   

Giả sử tồn tại 2 số hữu tỉ x và y  trái dấu thỏa mãn đẳng thức: \(\frac{1}{x+y}\) = \(\frac{1}{x}+\frac{1}{y}\)

=> \(\frac{1}{x+y}\)\(\frac{y+x}{xy}\)  <=> \(\left(x+y\right)^2\)  = xy

Điều này vô lí vì  \(\left(x+y\right)^2\)  > 0 còn xy < 0( vì x và y trái dấu , không đối nhau). Vậy không tồn tại 2 số hữu tỉ x và y trái dấu , không đối nhau thảo mãn đề bài.Chấm cho mình nha.

le hoang tran
Xem chi tiết
Pham Xuan Ton
Xem chi tiết
Hoàng Tử Lớp Học
28 tháng 8 2016 lúc 20:05

Gỉa sử tồn tại hai số hữu tỉ x, y trái dấu ko đối nhau tm \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\) <=>  1 / x+ y  =  x + y / xy  <=>(x+ y )^2 = xy    (1)        ( nhân chéo hai vế) 

Do x và y là hai số hữu tỉ trái dấu nên xy<0 mà (x+ y)^2 lớn hơn hoặc bằng 0 với mọi x và y  => (x+y)^2 >xy trái với (1)  

Suy ra điều giả sử ko xảy ra => ko có hai số nào tm => đpcm