Let a and b distincts satisfy the conditions a^2 + 3a = b^2 + 3b =2. Find a + b
Let a and b distinct satisfy the conditions a2+3a=b2+3b=2.Find a+b.
Let a and b distinct satisfy the conditions a2+3a=b2+3b=2. Find a+b.
Câu 1 : Let a and b distinct satisfy the conditions of a2 + 3a = b2 + 3b
Find a + b
Câu 2 : Given that the division of ( 5x ^ 3 - 3x ^2 + 7 ) by ( x ^ 2 + 1 ) has the remainder ax + b . Find a + b
Trả lời hộ mình nhé =)))
Tick không caccau :*
Let and distinct satisfy the conditions .
Find .
Answer:
đáp số thì = -2 nhưng mà vẫn hơi khúc mắc vài chỗ @@
có a2 + 3a = b2 + 3b = 2
<=> a2 + 3a - b2 - 3b = 2
<=> (a - b)( a + b + 3) = 2
xét a-b và a+b+3 thấy a-b< a+b+3
=> \(\left[\begin{matrix}\left\{\begin{matrix}a-b=1\\a+b+3=2\end{matrix}\right.\\\left\{\begin{matrix}a-b=-2\\a+b+3=-1\end{matrix}\right.\end{matrix}\right.\)(đoạn này này, có a+b rồi nhưng ra 2 két quả lận nên phải giải nó ra thôi)
giải ra rồi thì a=b=-1 (?????!!!!!)
=> a+b+=-2
1. Determine all pairs of integer (x;y) such that \(2xy^2+x+y+1=x^2+2y^2+xy\)
2. Let a,b,c satisfies the conditions
\(\hept{\begin{cases}5\ge a\ge b\ge c\ge0\\a+b\le8\\a+b+c=10\end{cases}}\)
Prove that \(2a^2+b^2+c^2\le38\)
3. Let a nad b satis fy the conditions
\(\hept{\begin{cases}a^3-6a^2+15a=9\\b^3-3b^2+6b=-1\end{cases}}\)
Find the value of\(\left(a-b\right)^{2014}\) ?
4. Find the smallest positive integer n such that the number \(2^n+2^8+2^{11}\) is a perfect square.
Let a , b and c be positive real numbers such that a + b + c = 3 . Find the minimum value of the expression .
\(P=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{a^2+b^2+c^2}\)
Cho a > b, hãy so sánh:
a) − 3 a + 4 và − 3 b + 4 b) 2 − 3 a và 2 − 3 b
Sử dụng mối liên hệ giữa thứ tự và phép nhân, phép cộng, chúng ta thu được
a) -3a + 4 < -3b + 4; b) 2 - 3a < 2 - 3b.
Bài 3: Cho a>b>0 và 3a^2+3b^2=10ab. Tính giá trị của p=b-a/b+a
Làm theo cách:
3a^2-10ab+3b^2=0
3a^2-9ab-ab+3b^2=0
\(3a^2+3b^2=10ab\)
\(\Rightarrow3a^2-10ab+3b^2=0\)
\(\Rightarrow3a^2-ab-9ab+3b^2=0\)
\(\Rightarrow\left(3a^2-ab\right)-\left(9ab-3b^2\right)=0\)
\(\Rightarrow a\left(3a-b\right)-3b\left(3a-b\right)=0\)
\(\Rightarrow\left(3a-b\right)\left(a-3b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3a-b=0\\a-3b=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}b=-3a\\b=\dfrac{a}{3}\end{matrix}\right.\)
Với \(b=-3a,\)có :
\(P=\dfrac{-3a-a}{-3a+a}=\dfrac{-4a}{-2a}=2\)
Với \(b=\dfrac{a}{3},\)có :
\(P=\dfrac{\dfrac{a}{3}-a}{\dfrac{a}{3}+a}=\dfrac{\dfrac{a}{3}-\dfrac{3a}{3}}{\dfrac{a}{3}+\dfrac{3a}{3}}=\dfrac{-\dfrac{2a}{3}}{\dfrac{4a}{3}}=-\dfrac{2a}{3}.\dfrac{3}{4a}=-\dfrac{1}{2}\)
( Nếu sai thì cho mk xin lỗi nha bn , tại mk ko chắc lắm )
1) The rectangle has length p and breath q (cm), where p and q are intergers. If p and q satisfy the equation pq+q=13 + q2
then the maxnium area of the rectangle
2) Let a,b and c be positive intergers such that ab + bc=518 and ab-ac=360. Find the largest value of the product abc.
P/s: As you may now, These are some questions from the 8 round of Math Violympic. Plz help me as much as you can! Thanks for all!
Ta có: \(pq+q=13+q^2\Leftrightarrow q\left(p+1\right)=13+q^2\)
Vì\(q^2⋮q\Leftrightarrow13⋮q\Leftrightarrow\left[{}\begin{matrix}q=1\\q=13\end{matrix}\right.\)
Nếu q =1 thì:\(p+1=14\Leftrightarrow p=13\)
\(\Rightarrow pq=13\left(cm^2\right)\)(1)
Nếu q=13 thì:\(13p+13=182\Leftrightarrow p=13\)
\(\Rightarrow pq=169\left(cm^2\right)\)(2)
Từ (1)(2) ta có: \(max\left(pq\right)=169\left(cm^2\right)\)
Bạn xem hộ mình sai ở đâu k
câu 2 thì dựa vào đây nhưng chưa đầy đủ đâu bạn làm nốt nhé https://hoc24.vn/hoi-dap/question/197024.html?pos=675443
Hey guys! I have to do a City's Math Violympic on March 9th ( who like me, raise hands, lol :)) so it is not enough time to solve this very difficult problem, right??? Plz help me,guys! God bless you all xx. Sending you a big hug!