n^12 - n^8 - n^4 + n^2 ( chứng minh đa thức chia hết cho 512)
Chứng minh rằng : n^12-n^8-n^4+1 chia hết cho 512.
Bạn xem lại đề. Nếu n chẵn thì
\(n^{12}-n^8-n^4+1\)
là số lẻ. Do đó không thể chia hết cho 512 được.
chứng minh rằng n^12 -n^8 n^4+1 chia hết cho 512 với n lẻ
Chứng minh rằng với mọi n thuộc N :
a, n2 +4n +3 chia hết cho 8
b, n3+3n2-n-3 chia hết cho 48
c, n12-n8-n4+1chia hết cho 512
b. Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath
Chứng minh với mọi n là số lẻ thì :
b, n3+3n2-n-3 chia hết cho 48
c, n12-n8-n4+1 chia hết cho 512
b. Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath
chứng minh rằng: m12-m8-m4+1 chia hết cho 512 với mọi số tự nhiên lẻ n
Chứng minh rằng với mọi n là số tự nhiên lẻ thì:
a/ \(n^3+3n^2-n-3\) chia hết cho 48
b/ \(n^{12}-n^8-n^4+1\) chia hết cho 512
1/
$A=n^3+3n^2-n-3=n^2(n+3)-(n+3)=(n^2-1)(n+3)$
$=(n-1)(n+1)(n+3)$
Do $n$ lẻ nên đặt $n=2k+1$ với $k$ tự nhiên. Khi đó:
$A=(2k+1-1)(2k+1+1)(2k+1+3)=2k(2k+2)(2k+4)$
$=8k(k+1)(k+2)$
Vì $k,k+1, k+2$ là 3 số tự nhiên liên tiếp nên trong đó có ít nhất 1 số chẵn, 1 số chia hết cho 3.
$\Rightarrow k(k+1)(k+2)\vdots 2, k(k+1)(k+2)\vdots 3$
$\Rightarrow k(k+1)(k+2)\vdots 6$ (do $(2,3)=1$)
$\Rightarrow A\vdots (8.6)$ hay $A\vdots 48$.
2/
$B=n^{12}-n^8-n^4+1=(n^{12}-n^8)-(n^4-1)$
$=n^8(n^4-1)-(n^4-1)=(n^8-1)(n^4-1)$
$=(n^4-1)(n^4+1)(n^4-1)$
Đặt $n=2k+1$ với $k$ tự nhiên. Khi đó:
$(n^4-1)(n^4-1)=[(n-1)(n+1)(n^2+1)]^2$
$=[2k(2k+2)(4k^2+4k+2)]^2=[8k(k+1)(2k^2+2k+1)]^2$
Vì $k,k+1$ là 2 số tự nhiên liên tiếp nên $k(k+1)\vdots 2$
$\Rightarrow 8k(k+1)\vdots 16$
$\Rightarrow (n^4-1)(n^4-1)=[8k(k+1)(2k^2+2k+1)]^2\vdots 16^2=256$
Mà $n^4+1\vdots 2$ do $n$ lẻ.
$\Rightarrow (n^4-1)(n^4-1)(n^4+1)\vdots (2.256)$
Hay $B\vdots 512$
CẦN GẤP!!
Chứng minh:
a) m3+20m chia hết ch 48 với m là số nguyên chẵn
b) n12-n8-n4+513 chia hết cho 512 với n là số nguyên lẻ
Ta có: A =n^12-n^8-n^4+1
=(n^8-1)(n^4-1)=(n^4+1)(n^4-1)^2
=(n^4+1)[(n^2+1)(n^2-1)]^2
=(n-1)^2*(n+1)^2*(n^2+1)^2*(n^4+1)
Ta có n-1 và n+1 là 2 số chẵn liên tiếp nên có 1 số chỉ chia hết cho 2 ,1 số chia hết cho 4 nên (n-1)(n+1) chia hết cho 8 => (n-1)^2*(n+1)^2 chia hết cho 64
Mặt khác n lẻ nên n^2+1,n^4+1 cũng là số chẵn nên (n^2+1)^2*(n^4+1) chia hết cho 2^3=8
Do đó : A chia hết cho 64*8=512
a, Ta có m là số nguyên chẵn
=> m có dạng 2k
=> m3+20m=(2k)3+20.2k
=8k3+40k=8k(k2+5)
Cần chứng minh k(k2+5) chia hết cho 6
Nếu k chẵn => k(k2+5) chia hết cho 2
Nếu k lẻ =>k2 lẻ=> k2+5 chẵn=> k(k2+5) chia hết cho 2
Nếu k chia hết cho 3 thì k(k2+5) chia hết cho 3
Nếu k chia 3 dư 1 hoặc dư 2 thì
k có dạng 3k+1 hoặc 3k+2
=> (3k+1)[(3k+1)2+5)]
=(3k+1)(9k2+6k+6) Vì 9k2+6k+6 chia hết cho 3
=> k(k2+5) chia hết cho 3
Nếu k chia 3 dư 2
=> k có dạng 3k +2
=> k(k2+5)=(3k+2)[(3k+2)2+5]
=(3k+2)(9k2+12k+9)
Vì 9k2+12k +9 chia hết cho 3
=> k(k^2+5) chia hết cho 3
=> k(k2+5) chia hết cho 6
=> 8k(k2+5) chia hết cho 48
=> dpcm
n^12-n^8-n^4+1 chia hết cho 512 ( n thuộc Z)
ai làm nhanh minh tick nhé (gấp rồi)
a) Ta có: A =n^12-n^8-n^4+1
=(n^8-1)(n^4-1)=(n^4+1)(n^4-1)^2
=(n^4+1)[(n^2+1)(n^2-1)]^2
=(n-1)^2*(n+1)^2*(n^2+1)^2*(n^4+1)
Ta có n-1 và n+1 là 2 số chẵn liên tiếp nên có 1 số chỉ chia hết cho 2 ,1 số chia hết cho 4 nên (n-1)(n+1) chia hết cho 8 => (n-1)^2*(n+1)^2 chia hết cho 64
Mặt khác n lẻ nên n^2+1,n^4+1 cũng là số chẵn nên (n^2+1)^2*(n^4+1) chia hết cho 2^3=8
Do đó : A chia hết cho 64*8=512
Đặt A = n12 - n8 - n4 + 1
= n8(n4 - 1) - (n4 - 1)
= (n8 - 1)(n4 - 1)
= (n - 1)(n + 1)(n2 + 1)(n4 + 1)(n - 1)(n + 1)(n2 + 1)
= [(n - 1)(n + 1)(n2 + 1)]2 [(n - 1)(n + 1)(n2 + 1) + 2]
Nếu n chắn
=> n + 1 lẻ => Với n chẵn A không chia hết cho 512
Nếu n lẻ
Đặt n = 2k + 1
=> A = [(2k + 1 - 1)(2k + 1 + 1)(4k2 + 4k + 2)]2 [(2k + 1 - 1)(2k + 1 + 1)(4k2 + 4k + 2) +2]
= [2k.2(k + 1).2(2k2 + 2k + 1)]2 . [2k.2(k +1).2(2k2 + 2k + 1) + 2]
= [8k(k + 1)(2k2 + 2k + 1)]2 . 2[k(k + 1)(2k2 + 2k + 1) + 1]
Nhận thấy k(k + 1) \(⋮\)2
=> 8k(k + 1) \(⋮16\)
=> [8k(k + 1)(2k2 + 2k + 1) \(⋮\) 16
=> [8k(k + 1)(2k2 + 2k + 1)]2 \(⋮16^2=256\)
mà 2[k(k + 1)(2k2 + 2k + 1) + 1] \(⋮\)2
=> [8k(k + 1)(2k2 + 2k + 1)]2 . 2[k(k + 1)(2k2 + 2k + 1) + 1] \(⋮256.2=512\) => A \(⋮512\)khi n lẻMột mảnh gỗ hình chữ nhật có chu vi là 48cm . Giảm chiều dài đi 4cm và giữ nguyên chiều rộng thì mảnh đất còn lại là hình vuông. Tính diện tích của mảnh gỗ hình vuông
mik đố các bn nha
CMR với mọi n lẻ thì
a. n^2 +4n +3 Chia hết cho 8
b. n^3+3n^2 - n-3chia hết cho 48
c. n^12 -n^8 -n^4 +1 chia hết cho 512