Tìm giá trị lớn nhất của A:
A=|x-2018|-|x-2018|
cho biểu thức \(A=33×3+720:\left(x-6\right)\)
Tìm giá trị của x khi \(A=139\)
Tìm giá trị số tự nhiên của x để biểu thức A có giá trị lớn nhất, giá trị lớn nhất là bao nhiêu?
\(A=139\)
\(\Leftrightarrow720:\left(x-6\right)=40\)
\(\Leftrightarrow x-6=18\)
hay x=24
với giá trị nguyên nào của x thì
P=\(\dfrac{2018-x}{4-x}\)có giá trị lớn nhất,tìm giá trị lớn nhất
Ta có \(P=\dfrac{2018-x}{4-x}=\dfrac{2014+4-x}{4-x}=1+\dfrac{2014}{4-x}\)
Để P đạt giá trị lớn nhất thì \(\dfrac{2014}{4-x}\) đạt giá trị lớn nhất
⇒ 4 - x đạt giá trị nguyên dương nhỏ nhất
⇔ \(4-x=1\Leftrightarrow x=3\)
Với \(x=3\) thì \(P=2015\)
Vậy Max(P)=2015 khi x=3
Thấy đúng thì ủng hộ mik nhak
làm
5. Tìm giá trị nhỏ nhất của B= (x+1)2 + (y+3)2+1
Ai nhanh mk tick cho
ghi rõ cách làm nha
Cho x ,y thuộc Z:
a, Với giá trị nào của x thì A = 100 - |x + 5| có giá trị lớn nhất . Tìm giá trị đó.
b, Với giá trị nào của y thì B = |y - 3| + 50 có giá trị nhỏ nhất. Tìm giá trị đó
a) Vì \(\left|x-5\right|\ge0\)nên \(100-\left|x-5\right|\le100\)
Để A lớn nhất thì \(\left|x-5\right|=0\Leftrightarrow x=-5\)
Vậy A lớn nhất bằng 100 khi và chỉ khi x= -5
b) Vì \(\left|y-3\right|\ge0\)nên \(\left|y-3\right|+50\ge50\)
Để B lớn nhất thì \(\left|y-3\right|=0\Leftrightarrow y=3\)
Vậy B nhỏ nhất bằng 50 khi và chỉ khi y= 3
cho A=x+1/x^2+x+1
a, tìm giá trị nhỏ nhất của A
b, tiìm giá trị lớn nhất của A
cho a= 2017/9-x với giá trị nguyên nào của x thì a có giá trị lớn nhất. tìm giá trị đó
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P=x+\sqrt{4-x^2}\)
TXĐ: D=[-2,2]
P'=\(1-\frac{x}{\sqrt{4-x^2}}\)
P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)
\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)
=> \(x=\sqrt{2}\)
P(-2)=-2
\(P\left(\sqrt{2}\right)=2\sqrt{2}\)
P(2)=2
Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2
Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức \(y=\dfrac{x^2+2}{x^2+x+1}\)
Ta có :\(y=\frac{x^2+2}{x^2+x+1}\)
\(\Leftrightarrow yx^2+yx+y=x^2+2\)
\(\Leftrightarrow x^2\left(y-1\right)+yx+y-2=0\)(1)
*Xét y = 1 thì pt trở thành \(x-1=0\)
\(\Leftrightarrow x=1\)
*Xét \(y\ne1\)thì pt (1) là pt bậc 2 ẩn x
Có \(\Delta=y^2-4\left(y-1\right)\left(y-2\right)\)
\(=y^2-4\left(y^2-3y+2\right)\)
\(=y^2-4y^2+12y-8\)
\(=-3y^2+12y-8\)
Pt (1) có nghiệm khi \(\Delta\ge0\)
\(\Leftrightarrow-3y^2+12y-8\ge0\)
\(\Leftrightarrow\frac{6-2\sqrt{3}}{3}\le y\le\frac{6+2\sqrt{3}}{3}\)
Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức:
Q = \(\sqrt{x+1}+\sqrt{6-x}\)
ta có
can x+1 >=0 voi moi x
can 6-x >=0 voi moi x
=> căn x+1 + căn 6-x >= 0
Q2=7+2\(\sqrt{\left(x+1\right)\left(6-x\right)}\)\(\ge\)7 => Q\(\ge\)\(\sqrt{7}\)
dấu bằng khi x=-1 hoặc x=6
Q2=7+2\(\sqrt{\left(x+1\right)\left(6-x\right)}\)\(\le\)7+x+1+6-x = 14 => Q\(\le\) \(\sqrt{14}\)
dấu bằng khi x+1 = 6-x <=> 2x =5 <=> x=2.5