Chứng minh rằng abc đồng dư với 0 (mod21)khi của chỉ khi (a-2b)+4c đồng dư với 0 (mod 21)
chứng minh rằng nếu abc đồng dư với 0 (mod 21) thì (a - b) + 4c đồng dư với 0 (mod 21)
\(\overline{abc\equiv0}\) (mod 21)
<=> 100a +10b+c\(\equiv\)0 (mod 21)
<=> 84a+16a+10b+c\(\equiv\)0 (mod 21)
<=> 16a+10b+c\(\equiv\)0 (mod 21) vì 84\(⋮\)21
<=> 64a+40b+4c\(\equiv\)0 (mod 21)
<=> 63a+a+42b-2b+4c\(\equiv\)0 (mod 21)
<=> a-2b+4c\(\equiv\)0 (mod 21) đpcm
chứng minh:abc đồng dư với 0(mod 21)\(\Leftrightarrow\)(a-2b+4c)đồng dư với 0(mod 21)
chứng minh:abc đồng dư với 0(mod 21)$$(a-2b+4c)đồng dư với 0(mod 21)
làm thì làm luôn mà không làm thì đừng ghi linh tinh nha
oh! tớ chưa học đến đồng dư công nhận lớp cậu học sớm ghê
cmr abc đồng dư 0 (mod 21) khi va chỉ khi (a - b)+ 4c đồng dư 0(mod 21)
CHỨNG MINH RẰNG:
a) Nếu a đồng dư với 1 ( mod 2) thì a2 đồng dư với 1 ( mod 8)
b) Nếu a đồng dư với 1 ( mod 3) thì a2 đồng dư với 1 ( mod 9)
chứng minh rằng :
Nếu a đồng dư với 1 (mod 2) thì a2 đồng dư với 1(mod 8)
Bạn tham khảo lời giải tại đây:
Chứng minh 1n+2n+3n+4n ⋮ 5 ⇔ n không chia hết cho 4(với mọi số tự nhiên n khác 0)
gợi ý : 1 đồng dư 1 (mod 5)
4 đồng dư -1(mod 5)
chứng minh 2^9+2^99 đồng dư với 0 (mod 200)
Cho abc là số tự nhiên có 3 chữ số. Chứng minh rằng abc chia hết cho 21 khi và chỉ khi a - 2b + 4c chia hết cho 21.
Ta có :
4 . abc = 400a + 40b + 4c = 399a + 42b + a - 2b + 4c
= 21 ( 19a + 2b ) + ( a - 2b + 4c ) chia hết cho 21
( Do 21 chia hết cho 21 và a - 2b + 4c chia hết cho 21 )
=> 400a + 40b + 4c chia hết cho 21
=> 4 ( 100a + 10b + c ) chia hết cho 21
=> 100a + 10b + c chia hết cho 21
=> abc chia hết cho 21
Vậy nếu a-2b+4c chia hết cho 21 thì abc chia hết cho 21
Ta có :
4 . abc = 400a + 40b + 4c = 399a + 42b + a - 2b + 4c
= 21 ( 19a + 2b ) + ( a - 2b + 4c ) chia hết cho 21
( Do 21 chia hết cho 21 và a - 2b + 4c chia hết cho 21 )
=> 400a + 40b + 4c chia hết cho 21
=> 4 ( 100a + 10b + c ) chia hết cho 21
=> 100a + 10b + c chia hết cho 21
=> abc chia hết cho 21
Vậy nếu a-2b+4c chia hết cho 21 thì abc chia hết cho 21