Cho x < y < 0 va | x | - | y | = 100 , tinh x ; y
cho x>0 , y>0,xy =60 va x-y=7
khong tinh x va y tinh A=x^4+y^4
ta có x-y = 7 => (x-y)^2 = 49 <=> x^2 + y^2 - 2xy = 49 <=> x^2+y^2 - 2*60 = 49 <=> x^2+y^2 = 49+ 120 <=> x^2+y^2 = 169 => \(\left(x^2+y^2\right)^2=169^2\)<=> x^4+y^4 + \(2x^2y^2\)= 28561 (1)
từ xy = 60 => x^2 * y^2 = 360 => 2x^2 * y^2 = 720 thay vào 1 tính được A= x^4 + y^4 = 27841
Chúc bạn học tốt!
Cho x<y<0 va co |x| - |y| = 25. tinh x-y =?
Cho x,y,z khac 0 va x - y -z = 0. Tinh gia tri bieu thuc A = ( 1- z/x)(1-x/y)(1-y/z)
Cho x.y.z khac 0 va x+y+z=0 .Tinh
(1+x/y)(1+y/z)(1+z/x)
x+y+z=0
=>x+y=-z
=>y+z=-x
=>z+x=-y
(1+x/y)(1+y/z)(1+z/x)
(y+x/y)(z+y/z)(x+z/x)
-z/y.-x/z.-y/x
=-1
Cho x2 + y2 = 50/7xy va y>x>0 Tinh gia tri P = (x-y)/(x+y)
Cho x,y,z khac o va x-y-z=0.Tinh gia tri cua bieu thuc A=(1-z/x)(1-x/y)(1+y/Z)
cho a/x=b/y=c/z=1/5 va x+y+z khac 0 tinh A=x+y+z/a+b+c
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{a+b+c}{x+y+z}=\frac{1}{5}\)
\(\Rightarrow A=\frac{x+y+z}{a+b+c}=\frac{5}{1}=5\)
Vậy A = 5
Cho x2=y.z ;y2=x.z va x+y+z khac 0 va x;y;z khac 0 Tinh A = (x+y+z)999/x222.y333.z444 Cac bn giup mk nha , mk se tra on
\(x^2=yz\Rightarrow\frac{x}{y}=\frac{z}{x}\)
\(y^2=xz\Rightarrow\frac{x}{y}=\frac{y}{z}\)
\(\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}\)
Do x, y, z \(\ne\)0 \(\Rightarrow\frac{x+y+z}{y+z+x}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{y}=1\\\frac{y}{z}=1\\\frac{z}{x}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)
\(\Rightarrow\frac{\left(x+y+z\right)^{999}}{x^{222}.y^{333}.z^{444}}=\frac{\left(3x\right)^{999}}{x^{222}.x^{333}.x^{444}}=\frac{3^{999}.x^{999}}{x^{999}}=3^{999}\)
Vậy.............
Giả sử một trong 3 số x, y, z bằng 0 thì ta chứng minh được hai số còn lại bằng 0 (trái với x + y + z ≠ 0)
Do đó x, y, z khác 0
Ta có: \(x^2=yz\Leftrightarrow z=\frac{x^2}{y}\left(1\right)\)
\(y^2=xz\Leftrightarrow z=\frac{y^2}{x}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{x^2}{y}=\frac{y^2}{x}\Leftrightarrow x^3=y^3\Leftrightarrow x=y\)
Thay x = y vào \(x^2=yz\Rightarrow y^2=yz\Leftrightarrow y^2-yz=0\Leftrightarrow y\left(y-z\right)=0\)
=> y = 0 hoặc y - z = 0
Do y khác 0 nên y - z = 0 <=> y = z <=> x = y = z
Thay x = y = z vào A ta có:
\(A=\frac{\left(x+y+z\right)^{999}}{x^{222}.y^{333}.z^{444}}=\frac{\left(x+x+x\right)^{999}}{x^{222}.x^{333}.x^{444}}=\frac{\left(3x\right)^{999}}{x^{999}}=\frac{3^{999}x^{999}}{x^{999}}=3^{999}\)
x;y;z khac 0 va x-y-z=0 . tinh B=(1- z/x).(1- x/y).(1+y/z)
x-y-z=0
=> x=y+z
y=x-z
-z=y-x
B=(1-z/x)(1-x/y)(1+y/z)
B=((x-z)/x)((y-x)/y)((z+y)/z)
B=(y/x)(-z/y)(x/z)
B=(-z.y.x)/(x.y.z)
B=-1