Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
con cac
Xem chi tiết
Lê Thùy Dung
Xem chi tiết
Hỗn Thiên
28 tháng 12 2016 lúc 19:43

C = ( x2 - 4xy + 4y2 ) + 10.(x -2y) + ( y2 -2y + 1) + 27

   = ( x-2y)2 + 2.5.(x-2y) + 25 + (y-1)2 + 2

   = ( x-2y + 5 )2 + (y-1)2 + 2 \(\ge2\)vì \(\left(x-2y+5\right)^2\ge0\forall x,y\) và \(\left(y-1\right)^2\ge0\forall y\)

Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy Min C = 2 \(\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Chi Lê Thị Phương
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 9 2021 lúc 16:29

\(A=\left(x^2+4x+4\right)+3=\left(x+2\right)^2+3\ge3\)

\(A_{min}=3\) khi \(x=-2\)

\(B=\left(x^2-20x+100\right)+1=\left(x-10\right)^2+1\ge1\)

\(B_{min}=1\) khi \(x=10\)

\(C=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)

\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

\(C_{min}=2\) khi \(\left(x;y\right)=\left(-3;1\right)\)

Xem chi tiết
๖²⁴ʱんuリ イú❄✎﹏
16 tháng 11 2019 lúc 20:23

C = x2 - 4xy + 5y2 + 10x - 22y + 28

= (x^2 - 4xy + 4y^2) + (10x - 20y) + (y^2 - 2y) + 28

= (x - 2y)^2 + 10(x - 2y) + 25 + (y^2 - 2y + 1) + 2

= (x - 2y)^2 + 2.(x - 2y).5 + 5^2 + (y - 1)^2 + 2

= (x - 2y + 5)^2 + (y - 1)2 + 2

Vì (x−2y+5)^2≥0∀x;y; (y−1)^2≥0∀y nên (x−2y+5)^2+(y−1)^2+2≥2∀x;y

hay C≥2∀x;y

Dấu ''='' xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2y-5\\y=1\end{cases}\Rightarrow}\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)

Khách vãng lai đã xóa
Thuhuyen Le
Xem chi tiết
Công chúa thủy tề
Xem chi tiết
hya_seije_jaumeniz
17 tháng 7 2018 lúc 10:41

\(R=x^2-4xy+5y^2+10x-22y+28\)

\(R=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+28\)

\(R=\left[\left(x-2y\right)^2+2\left(x-2y\right).5+25\right]+\left(y^2-2y+1\right)+2\)

\(R=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)

Mà  \(\left(x-2y+5\right)^2\ge0\forall x;y\)

      \(\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow R\ge2\)

Dấu "=" xảy ra khi : 

\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy ...

Nguyễn Ngọc Linh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
6 tháng 9 2017 lúc 15:19

b) Ta có : 4x - x2 + 1 

= -(x2 - 4x - 1)

= -(x2 - 4x + 4 - 5) 

= -(x2 - 4x + 4) + 5

= -(x - 2)2 + 5 \(\le5\forall x\) vì : \(-\left(x-2\right)^2\le0\forall x\)

Vậy GTLN của biểu thức là : 5 khi x = 2

l҉o҉n҉g҉ d҉z҉
6 tháng 9 2017 lúc 15:17

Ta có : (x2 - 4xy + 4y2) + (10x - 20y) + (y2 - 2y + 1) + 27

= (x - 2y)2 + 10(x - 2y) + (y - 1)

= (x - 2y)2 + 10(x - 2y) + 25 + (y - 1)2 + 2

= (x - 2y + 5)2 + (y - 1)2 + 2 \(\ge2\forall x\)

Vậy GTNN của biểu thức là 2 

Khi \(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Nhók Bạch Dương
6 tháng 9 2017 lúc 15:25

Ta có : (x 2 - 4xy + 4y 2 ) + (10x - 20y) + (y 2 - 2y + 1) + 27

= (x - 2y)2 + 10(x - 2y) + (y - 1)2

= (x - 2y)2 + 10(x - 2y) + 25 + (y - 1)2 + 2

= (x - 2y + 5)2 + (y - 1)2 + 2 \(\ge2\forall x\)

Vậy GTNN của biểu thức là 2

Khi \(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)

b) Ta có : 4x - x 2 + 1 = -(x 2 - 4x - 1)

= -(x 2 - 4x + 4 - 5)

= -(x 2 - 4x + 4) + 5

= -(x - 2)2 + 5 \(\le5\forall x\) vì : \(-\left(x-2\right)^2\le0\forall x\) 

Vậy GTLN của biểu thức là : 5 khi x = 2 

Thaoperdant
Xem chi tiết
Nguyen Thuy Dung
Xem chi tiết
Lê Thị Ngọc Minh
27 tháng 11 2017 lúc 11:48

Ta có 

A=x2_6x+11=x2_2x3xx+32+2=(x-3)2+2>=2

=>MIN A=2 khi và chỉ khi x-3=0 hay x=3

B=x2-20x+101=x2-2x10xx+102+1=(x-10)2+1>=1

=>MIN B=1 khi và chỉ khi x-10=0 hay x=10

Nguyen Thuy Dung
27 tháng 11 2017 lúc 12:01

làm nốt hộ mình con C đi

Lê Thị Ngọc Minh
27 tháng 11 2017 lúc 12:40

Ta lại có

C=x2-4xy+5y2+10x-22y+28=(x2+(-2y)2-2x2xy+2x5xx-2x5x2y+52)+(y2_2y+12)+2

  =(x-2y+5)2+(y-1)2+2>=2

=>MIN C=2 khi và chỉ khi x-2y+5=0 và y-1=0 hay x=-3 và y=1