CMR : với mọi số tự nhiên n khác 0 thì số 3n+1 và số 4n+1 nguyên tố cùng nhau
Chứng minh rằng với mọi số tự nhiên n khác 0 thì số 3n + 1 và 4n + 1 nguyên tố cùng nhau.
ta có
gọi d là ƯCLN (3n+1 ; 4n+1)
suy ra 3n+1 chia hết cho d
4n+1 chia hết cho d
thì 12n +4 chia hết cho d
12n+3 chia hết cho d
suy ra 12n+4 -12n+3 chia hết cho d
suy ra 1 chia hết cho d
suy ra d =1
vậy 2 số này là 2 số nguyên tố cùng nhau
Chứng tỏ rằng với mọi số tự nhiên n khác 0 thì số 3n +1 và số 4n+1 là hai số nguyên tố cùng nhau
Chứng minh rằng với mọi số tự nhiên khác 0 thì 3n + 1 và 4n + 1 là hai số nguyên tố cùng nhau
Gọi d là UCLN của 3n + 1 và 4n + 1
=> 3n+1 ⋮ d => 12n+4 ⋮ d
4n+1 ⋮ d => 12n+3 ⋮ d
=> (12n+4) – (12n+3) ⋮ d
=> 1 ⋮ d => d = 1
Vậy 3n + 1 và 4n + 1 là hai số nguyên tố cùng nhau
Chứng minh rằng với mọi số tự nhiên khác 0 thì 3n + 1 và 4n + 1 là hai số nguyên tố cùng nhau
Chứng minh rằng với mọi số tự nhiên n khác 0 thì số 3n-1và số 4n-1 nguyên tố cùng nhau.
gọi ƯCLN(3n-1;4n-1)=d
=>4n-1-(3n-1)=n chia hết cho d
=>3n chia hết cho d
=>1 chia hết cho d
=>d=1
=>đpcm
Chứng minh rằng mọi số tự nhiên khác 0 thì số 3n + 1 và 4n + 1 nguyên tố cùng nhau
Với mọi số tự nhiên n khác 0. Chứng minh 4n+1 và 5n+1 là hai số nguyên tố cùng nhau
Gọi \(d=ƯCLN\left(4n+1;5n+1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}4n+1⋮d\\5n+1⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}20n+5⋮d\\20n+4⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=1\)
Vậy: 4n+1 và 5n+1 là hai số nguyên tố cùng nhau
CMR với mọi số tự nhiên n thì 4n+2 và 6n+1 nguyên tố cùng nhau
Gọi d là 1 ước chung của 4n + 2 và 6n + 1. Ta có :
4n + 2 :: d ; 6n + 1 :: d
=> 3( 4n + 2 ) - 2( 6n + 1 ) :: d
=> 12n + 6 - 12n + 2 :: d
=> 4 :: d => d thuộc { -4 ; -2 ; -1 ; 1 ; 2 ; 4 }
Mà 6n + 1 là số lẻ => n thuộc { -1; 1 } ( nguyên tố )
Vậy 4n + 2 và 6n + 1 nguyên tố cùng nhau ( đpcm )
a) chứng minh rằng khi nla số tự nhiên khác 0 thì n+1 là 2 số nguyên tố cùng nhau.
b)chứng minh rằng với mọi số tự nhiên n thì các số sau là nguyên tố cùng nhau :2n+3 va 4n+8
e có 2 chia hết cho d; 2n+3 lẻ nên (2n+3,4n+8)=1
còn n+1-n=1 nên (n,n+1)=1