Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Tuấn Dũng
Xem chi tiết
Nguyễn Minh Đăng
Xem chi tiết
Edogawa Conan
22 tháng 7 2020 lúc 16:03

P = \(\frac{a^2c}{a^2c+c^2b+b^2a+}+\frac{b^2a}{b^2a+a^2c+c^2b}+\frac{c^2b}{c^2b+b^2a+a^2c}\)

P = \(\frac{a^2c+b^2a+c^2b}{a^2c+c^2b+b^2a}=1\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
22 tháng 7 2020 lúc 20:25

\(P=\frac{\frac{a}{b}}{\frac{a}{b}+\frac{c}{a}+\frac{b}{c}}+\frac{\frac{b}{c}}{\frac{b}{c}+\frac{a}{b}+\frac{c}{a}}+\frac{\frac{c}{a}}{\frac{c}{a}+\frac{b}{c}+\frac{a}{b}}=\frac{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}=1\)

Khách vãng lai đã xóa
Agami Raito
Xem chi tiết
Phạm Đức Minh Trí
Xem chi tiết
Đặng Ngọc Quỳnh
9 tháng 2 2021 lúc 10:30

Theo tính chất dãy tỉ số bằng nhau ta có:

\(\frac{2a+b}{c}=\frac{2b+c}{a}=\frac{2c+a}{b}=\frac{2a+b+2b+c+2c+a}{a+b+c}=\frac{3\left(a+b+c\right)}{a+b+c}=3\)

\(\Rightarrow\frac{2a+b}{c}=\frac{3}{3}=1=\frac{a}{2b+c}=\frac{3b}{2c+a}\)

Vậy \(\frac{2a+b}{c}=\frac{a}{2b+c}=\frac{3b}{2c+a}=1\)

Khách vãng lai đã xóa
Nguyễn Thị Thanh Tuyền
Xem chi tiết
Nguyễn Thị Quỳnh Anh
Xem chi tiết
Lê Đức Lương
12 tháng 3 2021 lúc 18:11

\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=0\Leftrightarrow\frac{bc+ac-ab}{abc}=0\)

Vì \(a,b,c\ne0\Rightarrow abc\ne0\)

\(\Rightarrow bc+ac-ab=0\)

\(\Rightarrow\hept{\begin{cases}\left(bc+ac\right)^2=\left(ab\right)^2\\\left(bc-ab\right)^2=\left(-ac\right)^2\\\left(ac-ab\right)^2=\left(-bc\right)^2\end{cases}\Rightarrow\hept{\begin{cases}b^2c^2+c^2a^2-a^2b^2=-2abc^2\\b^2c^2+a^2b^2-a^2c^2=2ab^2c\\a^2c^2+a^2b^2-b^2c^2=2a^2bc\end{cases}}}\)

\(\Rightarrow E=\frac{a^2b^2c^2}{2ab^2c}+\frac{a^2b^2c^2}{-2abc^2}+\frac{a^2b^2c^2}{2a^2bc}\)

\(\Rightarrow E=\frac{ac}{2}-\frac{ab}{2}+\frac{bc}{2}=\frac{ac-ab+bc}{2}=\frac{0}{2}=0\)

CHÚC BẠN HỌC TỐT

Khách vãng lai đã xóa

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{bc+ac-ab}{abc}=0\)

Vì \(a,b,c\ne0\Rightarrow a.b.c\ne0\)

\(\Rightarrow bc+ac-ab=0\)

\(\Rightarrow\hept{\begin{cases}\left(bc+ac\right)^2=\left(ab\right)^2\\\left(bc-ab\right)^2=\left(-ac\right)^2\\\left(ac-ab\right)^2=\left(-bc\right)^2\end{cases}\Rightarrow}\hept{\begin{cases}b^2c^2+c^2a^2-a^2b^2=-abc^2\\b^2c^2+a^2b^2-a^2c^2=2ab^2c\\a^2c^2+a^2b^2-b^2c^2=2a^2bc\end{cases}}\)

\(\Rightarrow E=\frac{a^2b^2c^2}{2ab^2c}+\frac{a^2b^2c^2}{-2abc^2}+\frac{a^2b^2c^2}{2a^2bc}\)

\(\Rightarrow E=\frac{ac}{2}-\frac{ab}{2}+\frac{bc}{2}=\frac{ac-ab+bc}{2}=\frac{0}{2}=0\)

Vậy \(E=0\)

Khách vãng lai đã xóa
Nguyễn Quang 	Việt
13 tháng 3 2021 lúc 18:18
Ko biết Oke
Khách vãng lai đã xóa
manisana
Xem chi tiết
Sleepy Ash Kuro
Xem chi tiết
Agami Raito
Xem chi tiết