Cho A= 1990^10+ 1990^9, B= 1991^10. So sánh A và B
Cho A= 199010+ 19909, B=199110.So sánh A và B
ta có A= 1990^10+1990^9
suy ra A=1990^9 . ( 1990 + 1) = 1990^9 . 1991 mà ta có B= 1991^10 = 1991^9 . 1991
vì 1990^9 < 1991^9 suy ra A<B.chú ý dấu" . " là dấu nhân
so sánh :
a. 202^303 và 303^202
b. 99^20 và 9999^10
c. 11^1979 và 37^1320
d. 10^10 và 48.50^5
1990^10 + 1990^9 và 1991^10
b: 99^20=(99^2)^10=9801^10
=>99^20<9999^10
d: 10^10=100^5=4*50^5<48*50^5
e: 1990^10+1990^9
=1990^9(1990+1)
=1990^9*1991
1991^10=1991^9*1991
=>1991^10>1990^9*1991
=>1991^10>1990^10+1990^9
1. so sánh a,10 mũ 10 và 48. 50 mũ 5 b,1990 mũ 10 + 1990 mũ 9 và 1991 mũ 10 c,107 mũ 50 và 73 mũ 75 d,2 mũ 91 và 5 mũ 35 e, A = 72 mũ 45 - 72 mũ 44 và 72 mũ 44 - 72 mũ 43 2 tìm x a, x-2023 /4 = 1 phần x - 2023 b, (2x + 1) mũ 4= (2x + 1) mũ 6 c,(3x-1) mũ 10 = (3x - 1) mũ 20 d, 2 mũ x+1 . 3y = 12x
Bài 1:
a: \(10^{10}=\left(2\cdot5\right)^{10}=2^{10}\cdot5^{10}=2^9\cdot5^{10}\cdot2\)
\(48\cdot50^5=2^4\cdot3\cdot\left(2\cdot5^2\right)^5=2^4\cdot3\cdot2^5\cdot5^{10}=2^9\cdot5^{10}\cdot3\)
mà 2<3
nên \(10^{10}<48\cdot50^5\)
b: \(1990^{10}+1990^9=1990^9\left(1990+1\right)=1990^9\cdot1991\)
\(1991^{10}=1991^9\cdot1991\)
mà 1990<1991
nên \(1990^{10}+1990^9<1991^{10}\)
c: \(107^{50}<108^{50}=\left(2^2\cdot3^3\right)^{50}=2^{100}\cdot3^{150}\)
\(73^{75}>72^{75}=\left(2^3\cdot3^2\right)^{75}=2^{225}\cdot3^{150}\)
mà \(2^{225}\cdot3^{150}>2^{100}\cdot3^{150}=108^{50}>107^{50}\)
nên \(73^{75}>107^{50}\)
d: \(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
mà 8192>3125
nên \(2^{91}>5^{35}\)
e: \(A=72^{45}-72^{44}=72^{44}\left(72-1\right)=72^{44}\cdot71\)
\(B=72^{44}-72^{43}=72^{43}\left(72-1\right)=72^{43}\cdot71\)
mà 44>43
nên A>B
Bài 2:
a:
ĐKXĐ: x<>2023
\(\frac{x-2023}{4}=\frac{1}{x-2023}\)
=>\(\left(x-2023\right)\left(x-2023\right)=4\cdot1\)
=>\(\left(x-2023\right)^2=4\)
=>\(\left[\begin{array}{l}x-2023=2\\ x-2023=-2\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2+2023=2025\left(nhận\right)\\ x=-2+2023=2021\left(nhận\right)\end{array}\right.\)
b: \(\left(2x+1\right)^4=\left(2x+1\right)^6\)
=>\(\left(2x+1\right)^6-\left(2x+1\right)^4=0\)
=>\(\left(2x+1\right)^4\cdot\left\lbrack\left(2x+1\right)^2-1\right\rbrack=0\)
=>\(\left(2x+1\right)^4\cdot\left(2x+1-1\right)\left(2x+1+1\right)=0\)
=>\(2x\left(2x+1\right)^4\cdot\left(2x+2\right)=0\)
=>\(\left[\begin{array}{l}2x=0\\ 2x+1=0\\ 2x+2=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=-\frac12\\ x=-1\end{array}\right.\)
c: \(\left(3x-1\right)^{10}=\left(3x-1\right)^{20}\)
=>\(\left(3x-1\right)^{20}-\left(3x-1\right)^{10}=0\)
=>\(\left(3x-1\right)^{10}\cdot\left\lbrack\left(3x-1\right)^{10}-1\right\rbrack=0\)
=>\(\left[\begin{array}{l}\left(3x-1\right)^{10}=0\\ \left(3x-1\right)^{10}-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}3x-1=0\\ \left(3x-1\right)^{10}=1\end{array}\right.\)
=>\(\left[\begin{array}{l}3x-1=0\\ 3x-1=1\\ 3x-1=-1\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac13\\ x=\frac23\\ x=0\end{array}\right.\)
d: Sửa đề \(2^{x+1}\cdot3^{y}=12^{x}\)
=>\(2^{x+1}\cdot3^{y}=\left(2^2\cdot3\right)^{x}=2^{2x}\cdot3^{x}\)
=>\(\begin{cases}2x=x+1\\ y=x\end{cases}\Rightarrow\begin{cases}x=1\\ y=x=1\end{cases}\)
so sánh a, 99^20 va 9999^10 b, 1990^10 + 1990^9 va 1991^10
AI ghét MAi ANH thì kết bạn nha!
MK NÓI CHo CÁC BẠN BIẾT ĐINH THỊ MAI ANH LÀ NGƯỜI NHƯ THẾ NÀO:
+ MẬT DẠY,HAY CHỬI TỤC,NÓI BẬY
+ LUÔN ĐI CƯỚP NICK CỦA NGƯỜI KHÁC
+ NGƯỜI LỪA ĐẢO
+ LUÔN NÓI THÂN MẬT TRƯỚC NHỮNG NGƯỜI BÉ TUỔI
+.......................RẤT NHIỀU MK KO KỂ HẾT ĐC
So sánh ; 1990^10+1990^9 và 1991^10
Ta có :
1990^10 + 1990^9 = 1990.1990^9 + 1990^9 = 1991^9 < 1991^10
=> (1990^10 + 1990^9) < 1991^10
So sánh
a) 202^203 và 203^202
b) 1990^10+1990^9 và 1991^20
c) 11^1979 và 37^1320
a, 202203=(101.2)203
=101203.2203
=101202.2202.202
b, 203202=(101,5.2)202
=101,5202.2202
còn lại dễ
b, 199010+19909=19909.1990+19909=19909.(1990+1)=19909.1991
199120=199119.1991
=>199010+19909<199120
c, 111979<111980=(113)660=1331660
371320=(372)660=1369660
=>111979<371320
So sánh:
A=\(\dfrac{10^{1990}+1}{10^{1991}+1}\) và B=\(\dfrac{10^{1991}+1}{10^{1992}+1}\)
đáng ra là toán lớp 6 đó nhưng mik thích đặt toán lớp 5 :)
A = \(\dfrac{10^{1990}+1}{10^{1991}+1}\) ⇒ 10A = \(\dfrac{10^{1991}+10}{10^{1991}+1}\) = \(1+\dfrac{9}{10^{1991}+1}\)
B = \(\dfrac{10^{1991}+10}{10^{1992}+1}\) ⇒ 10B = \(\dfrac{10^{1992}+10}{10^{1992}+1}\) = 1 + \(\dfrac{9}{10^{1992}+1}\)
Vì \(\dfrac{9}{10^{1991}+1}\) > \(\dfrac{9}{10^{1992}+1}\)
10A > 10B => A > B
So sánh: A=10^1990+1/10^1991+1 và B=10^1991+1/10^1992+1
So sánh :
a) \(\left(\frac{1}{243}\right)^9\) và \(\left(\frac{1}{83}\right)^{13}\)
b)1990^10+1990^9 và 1991^10
a) \(\left(\frac{1}{243}\right)^9=\left(\frac{1}{3^5}\right)^9=\frac{1}{3^{45}}\)
\(\left(\frac{1}{83}\right)^{13}< \left(\frac{1}{81}\right)^{13}=\left(\frac{1}{3^4}\right)^{13}=\frac{1}{3^{52}}< \frac{1}{3^{45}}=\left(\frac{1}{243}\right)^9\Rightarrow\left(\frac{1}{83}\right)^{13}< \left(\frac{1}{243}\right)^9\)
b) 199010 + 19909
= 19909 ( 1990 + 1 )
= 19909 . 1991 < 199110 = 19919 . 1991
Vậy 199010 + 19909 < 199110