cho hai đường thẳng AB và CD căt nhau tại O; biết AOC cộng BOD bằng 130 độ? Tính số đo của bốn góc tạo thành
Cho đường tròn (O;R) và một điểm I nằm bên trong đường tròn. Hai dây AB và CD cùng đi qua I.Tiếp tuyến tại A và B của đường tròn cắt nhau tại P, tiếp tuyến tại C và D căt nhau tại Q. Gọi M là giao điểm của OQ và CD, N là giao điểm của OP và AB. CMR: OI vuông góc với PQ
Cho hai đường thẳng AB và CD cắt nhau tại O. Tìm tập hợp các điểm cách đều hai đường thẳng AB và CD.
* Xét điểm M nằm trong góc AOD
Kẻ MH ⊥ OA, MK ⊥ OD
Xét hai tam giác MHO và MKO:
∠(MHO) = ∠(MKO) = 90o
MH = MK
OM cạnh huyền chung
Suy ra: ΔMHO = ΔMKO
(cạnh huyền - cạnh góc vuông)
Suy ra: ∠(MOH) = ∠(MOK)(2 góc tương ứng)
Hay OM là tia phân giác của ∠(AOD).
* Ngược lại, M nằm trên tia phân giác của ∠(AOD)
Xét hai tam giác vuông MHO và MKO, ta có:
∠(MHO) = ∠(MKO)= 90o
∠(MOH) = ∠(MOK)
OM cạnh huyền chung
Suy ra: ΔMHO = ΔMKO (cạnh huyền - góc nhọn)
Suy ra: MH = MK (2 cạnh tương ứng)
Vậy tập hợp các điểm M cách đều OA và OD là tia phân giác Ox của góc AOD.
Tương tự M nằm trong các góc AOC, DOB, BOC thì tập hợp các điểm M là tia phân giác Oy, Oy’, Ox’.
Vậy tập hợp các điểm M cách đều hai đường thẳng AB và CD cắt nhau tại O là hai đường thẳng xx’ và yy’ là đường phân giác của các góc tạo bởi hai đường thẳng AB và CD.
1.Hai đường thẳng AB và CD cắt nhau tại O, tạo thành góc bằng 110º. Tính ba góc còn lại
2. Hai đường thẳng AB và CD cắt nhau tại O. Biết – = 20º. Tính mỗi góc , , , .
3. Hai đường thẳng CD và EF cắt nhau tại O tạo thành bốn góc không có điểm trong chung. Biết tổng của ba trong bốn góc ấy bằng 300º. Tính số đo của bốn góc nói trên (cho biết < )
4. Hai đường thẳng AB và CD cắt nhau tại O tạo thành góc bằng 50º. Gọi OM là tia phân giác của góc , ON là tia đối của OM. Tính ,
cho hai đường thẳng AB và CD cắt nhau tại O. Tìm tập hợp các điểm cách đều hai đường thẳng AB và CD.
Cho hai đường thẳng AB và CD cắt nhau tại O. Tìm tập hợp các điểm cách đều hai đường thẳng AB và CD ?
Nếu điểm M nằm trong góc AOD thì kẻ MH vuông góc với OA, MK vuông góc với OD
Xét ΔMHO vuông tại H và ΔMKO vuông tại K có
MO chung
MH=MK
Do đó: ΔMHO=ΔMKO
Suy ra: \(\widehat{MOH}=\widehat{MOK}\)
=>M nằm trên tia phân giác của góc AOD
Vì ΔMHO=ΔMKO nên MH=MK
=>Tập hợp điểm M cách đều OA và OD là phân giác Ox của góc AOD
Tương tự M nằm trong các góc AOC, DOB, BOC thì tập hợp các điểm M là tia phân giác Oy, Oy’, Ox’.
Vậy tập hợp các điểm M cách đều hai đường thẳng AB và CD cắt nhau tại O là hai đường thẳng xx’ và yy’ là đường phân giác của các góc tạo bởi hai đường thẳng AB và CD.
cho ABCD là hình vuông hai đường chéo cắt nhau ở O 2 đường thẳng d1 d2 đi qua O và vuông góc với nhau
d1 cắt AB tại m CD tại P d2 căt bc tại n ad tại mnpq là tứ giác j bt mnpq là hình thoi
Cho đường tròn (T) đường kính AB=2R. Trên tia đối của tia AB lấy điểm O sao cho A là trung tâm của OB. Trên đường thẳng vuông góc với đường thẳng AB tại O lấy điểm M bất kì Các tia MA,MB lần lượt căt (T) tại điểm thứ hai là C và E
1. CM bốn điểm O, E, A, M cùng nằm trên một đường tròn
2. Tia OE cắt T tại điểm thứ hai là F. CM OE. OF+BE. BM=16R2
ta có △ AEB nội tiếp (T) có AB là đường kính -> AE vuông EB hay AE vuông ME
xét tứ giác OAEM có góc MOA=góc AEM = 90độ → tứ giác OAEM nội tiếp → 4 điểm O,A,E,M cùng nằm trên một đường tròn
Cho 2 đường thẳng AB,CD cắt nhau tại O tạo Cho hai đthẳng AB và CD cắt nhau tại O tạo thành 4 góc (ko kể góc bẹt) . Biết AOC+DOB .Tính số đo 4 góc đó
Cho ABCD là tứ giác nội tiếp đường tròn (O) hai đường thẳng AD và BC cắt nhau tại E và hai đường thẳng AB và CD cắt nhau tại F.CMR AE*ED+FA*FB=EF^2